

Very Long Period Source Characteristics and Radiated Energy of Large Earthquakes

Luis Rivera¹ and Hiroo Kanamori²

University of Strasbourg, IPGS/CNRS
 Seismological Laboratory, Caltech

ECGS, Luxembourg October 2012

Outline

- Seismic moment estimation at increasingly long period: technique, examples, results.
- Radiated energy estimates: technique, examples, results.
- Energy partitioning
- Conclusions

Seismic moment estimation at increasingly long period

Strategy at VLP: use high S/N vertical component

Moment estimation at increasingly long period

- S1: 3 comp. unconstrained inversion (.001 .005) Hz
 -> focal mechanism
- S2: Only vertical (.001 .005) Hz Focal mechanism – constrained inversion
 → Reference seismic moment: Mo
- S3: Only vertical Focal mechanism – constrained inversion (.0010 - .00250) Hz → Mo' → ΔM_w (.0010 - .00125) Hz → Mo' → ΔM_w (.0008 - .00100) Hz → Mo' → ΔM_w (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → Mo' → ΔM_w
 (.0005 - .00100) Hz → Mo' → Mo'

T ~ 500 s -----> ~1000 s

Wphase focal mechanisms (s1) Mw ≥7.9 1990-2012 28 (+1) events

Moment estimation at increasingly long period Summary of results

Sumatra 2004 Moment rate spectrum

Frequency Hz

Amon et al., 2005

The 2009 Samoa doublet earthquake

Moment-rate spectrum and radiated Energy estimates

Tohoku-oki 2011, slip distribution

- Large (>50m) slip from a compact area near trench radiating weak high frequency
- Strong HF radiation from the down-dip portion

Lay et al. (2011), Lee et al. (2011)

High stress drop $\Delta \sigma$ =70 bar

2011 Tohoku – Oki Moment-rate Spectrum

Moment rate spectrum of great earthquakes

2011 Tohoku-Oki Cumulative energy (normalized)

2004 Sumatra Cumulative energy (normalized)

2010 Chile Cumulative energy (normalized)

Energy partitioning and Radiation efficiency

Scaled energy, (ER/M_o) , of subduction thrust earthquakes

Radiation efficiency

Two ingredients:

-
$$\Delta \sigma_E = \frac{\int_{\Sigma} \Delta u \Delta \sigma dS}{\int_{\Sigma} \Delta u dS}$$
 (Noda and Lapusta, 2012)

- μ is the rigidity "appropriate" for the entire rupture plane.

Both of which cannot be estimated accurately.

$$\Delta \sigma_{E} \approx C \mu \frac{\Delta u}{\Sigma_{th}^{1/2}}$$

Examples of radiation efficiency

With some assumptions, we obtain the following preliminary values, but the uncertainties are inevitably very large.

Examples

2010 Chile (M_w =8.8) mega-thrust η_R =0.302007 Kuril (M_w =8.1) outer-rise η_R =0.482010 Sumatra (M_w =7.8) tsunami earthquake η_R =0.032011 Tohoku (M_w =9.0) (tsunami E. thrust, HF event combined.) η_R =0.057

Radiation Efficiency

Mw

Conclusion

- 1. Overall stability of seismic moments at long period with a few significant exeptions revealing source complexity.
- 2. Energy estimates:
 - At LP strong dependency on the source model and the structure at the source.
 - At HF strong dependency on the attenuation model (e.g. 2012 off-Sumatra).
- 3. Radiated energy estimates are more model-dependent and a scatter of a factor of 2 is still an optimistic value.
- 4. 2011 Tohoku-oki earthquake:
 High stress–drop /deficient in HF/low efficiency
 Very large smooth slip on a compact region near the trench.

Thanks for your attention