Radiated Energy of Recent Great Earthquakes

Annemarie S. Baltay abaltay@stanford.edu

Gregory Beroza

SCHOOL OF EARTH SCIENCES

ECGS Source Meeting • October 3rd, 2012

16 great M>8.5 earthquakes since 1900

eGf-coda Methodology for Moderate Earthquakes

(1) Create coda spectra

- Narrow band-pass displacement records
- Time window in each record becomes coda spectral point

(2) Empirical Green's function to remove path effects

- Small event is modeled as ideal Brune-like event
- Path effects sequentially deconvolved from larger events
- Use moment from largest event to set relative moments

(3) Source spectra \rightarrow moment, corner frequency, energy

Radiated Energy and Apparent Stress

Stress Drop

Baltay et al, 2010 Baltay et al, 2011

- $\Delta\sigma$ and au_{a} both log-normally distributed
- Follow the expected theoretical relationship

Teleseismic empirical Green's functions

 $M_w 3$

Can't use local eGf method to analyze large M>7.5 earthquakes

Assume a ~ M 6.5 – 7.5 can be modeled as ideally Brune \rightarrow teleseismic eGf method

Ide et al, 2011

Ide et al, 2011

eGf Deconvolution

Corner frequency of mainshock is not well resolved \rightarrow Can't measure $\Delta \sigma$

Ide et al, 2011

Frequency-Energy Accumulation

- Most energy in
 0.01-0.1 Hz band,
 given very large size/
 low corner frequency
- High frequency contribution is negligible (as expected)
- P and S waves are similar for each eGf

Directivity of Seismic Energy

 $E_s = 7.06 \times 10^{17} \text{ J}$ $E_s/M_o = 1.57 \times 10^{-5}$ $\tau_a = 0.61 \text{ MPa}$

 \rightarrow Typically, expect higher energy in direction of rupture propagation

Ide et al, 2011

Slip Evolution

- Slow start
- •Down-dip propagation from ~20 s to 40 s

Rapid, along trench propagation
 ~50 s to 70 s with large slip

Ide et al, 2011

Line Sources

Model simple Haskell line sources

- Rupture direction
- Rupture dimensions
- Rupture velocity
- Amplitude

Ide et al, 2011

Sumatra 2004 M_w 9.2

Mean from 3 egf events, 3 components, and 46 stations $E_s = 7.25 \ x 10^{17} \ J \ E_s/M_o = 1.1 \ x \ 10^{-5} \ \tau_a = 0.43 \ MPa$

Annemarie Baltay • Great Earthquakes • ECGS 2012 A

Slip inversion from *Ammon et al,* [2005]

15

Maule, Chile 2010 M_w 8.8

Slip inversion from Hayes 2010

Nias, Sumatra 2005 Mw 8.7

Bilateral rupture

Mean from 4 egf events, 3 components, and 64 stations $E_s = 2.19 \times 10^{17} \text{ J}$ $E_s/M_o = 2.09 \times 10^{-5}$ $\tau_a = 0.81 \text{ MPa}$

Slip inversion from *Konca et al.* [2007]

Bengkulu, Sumatra, 2007 Mw 8.5

Mean from 4 egf events, 3 components, 57 stations $E_s = 1.33 \times 10^{17} \text{ J}; E_s/M_o = 1.98 \times 10^{-5} \quad \tau_a = 0.77 \text{ MPa}$

Slip inversion from *Konca et al.* [2008]

Off-Sumatra, 2012 Mw 8.6

Mean from largest egf, 3 components, 32 stations $E_s = 6.71 \times 10^{17} \text{ J}; E_s/M_o = 7.89 \times 10^{-5} \quad \tau_a = 3.07 \text{ MPa}$

> Greatest apparent stress of all great earthquakes - Strike slip - Deep oceanic lithosphere

Slip inversion from

Meng, Ampuero and Luo, 2012

Great Earthquake Apparent Stress

	Radiated Energy, E_R (Joules x10¹⁷)				E_R/M_o	$ au_{\mathrm{a}}$
Event	Newman	Kanamori	USGS ⁵	This study	$(x10^{-5})$	(MPa)
Tohoku-Oki 2011	4.2 ¹	4.3^{3}	5.1	7.06	1.57	0.61
Sumatra 2004	8.2^{2}	3.0^{4}	1.1	7.25	1.12	0.43
Maule 2010	2.6^{2}	1.7^{3}	0.47	1.86	1.03	0.40
Nias 2005	1.1^{2}	0.83^{4}	0.37	2.19	2.09	0.81
Benkulu 2007	0.69^{2}	0.38^{3}	0.26	1.33	1.98	0.77
Off-Sumatra 2012	2.1^{1}		2.7	6.71	7.89	3.07

Radiated Energy of Great Earthquakes

- Develop novel teleseismic eGf deconvolution method
- Can correct great earthquakes with ~ M 7 eGf events, despite complex rupture
- P and S waves give consistent results, comparable to other studies
- Overall radiated energy is a mixture of both high and low frequency radiation, and we can model some of this dependence through directivity with simple line sources and time dependent source inversions.
- Time dependent eGf source inversions would enlighten the azimuthal directivity further

Compiled Results

- EQs *M* ~2 to *M* ~9 have constant τ_{α} and no moment dependence
- τ_{α} ranges from 0.1 to 10 Mpa with mean ~ 1 Mpa, log-normal distribution $\Delta\sigma$ ranges from ~1 to 30 MPa, with mean ~ 6 MPa
- Considerable variability in $\Delta\sigma$ and τ_{α} is inherent source variability
- Supports self similar earthquake models