

Source scaling relations of km- to cm-scale (M_w 4 to -6) earthquakes: Experiences from mining- and fluid-induced seismicity, volcanic-hybrid seismic events and laboratory experiments

<u>Grzegorz Kwiatek</u>¹, Marco Bohnhoff¹, Rebecca M. Harrington², Elli-Maria Charalampidou¹, Fatih Bulut¹, Thomas Goebel³, Beata Orlecka-Sikora⁴, Georg Dresen¹

1. GFZ German Research Centre for Geosciences, Section 3.2: Geomechanics and Rheology

- 2. Karlsruhe Institute of Technology, Geophysical Institute
- 3. University of Southern California, Department of Earth Sciences
- 4. Institute of Geophysics, Polish Academy of Sciences

European Center for Geodynamics and Seismology

Motivation

Is the rupture process scale-invariant?

HELMHOLTZ CENTRE POTSDAM GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

Scaling relations

ECGS Workshop 2012

European Center for Geodynamics and Seismology

Seismic moment – corner frequency ("Static") EQs release same stress per unit fault area regardless of scale

$$\Delta \sigma \approx C \left(\frac{M_0}{\tilde{L}^3} \right)$$

Radiated Energy – Seismic moment ("Dynamic")

EQs radiate same energy per unit fault area per unit fault slip regardless of scale

$$\sigma_a = \mu \frac{E_0}{M_0}$$

European Center for Geodynamics and Seismology

Breakdown in scaling relations

- Scaling relations generally accepted for larger seismic events
- Debate over the scaling breakdown for smaller earthquakes controversial
 - Changes in rupture process between larger and smaller earthquakes (e.g. different rupture velocity, different governing physics)
 - Inappropriate corrections (e.g. for attenuation)
 - Invalid model assumptions (constant rupture velocity, certain failure mode)
 - Instrument-related (limited frequency band of the sensors)
 - Inappropriate data selection

European Center for Geodynamics and Seismology

Our data... from small- to femtoearthquakes

			Displacement		Seismic
Magnitude range	Class	Length scale	scale	Frequency scale	moment*
8–10	Great	100–1,000 km	4–40 m	0.001–0.1 Hz	1 KAk–1 MAk
6–8	Large	10–100 km	0.4–4 m	0.01–1 Hz	1 Ak–1 KAk
4–6	Moderate	1–10 km	4–40 cm	0.1–10 Hz	1 mAk–1 Ak
2–4	Small	0.1–1 km	4–40 mm	1–100 Hz	1 μAk–1 mAk
0–2	Micro**	10–100 m	0.4–4 mm	10–1,000 Hz	1 nAk–1 μAk
-2-0	Nano	1–10 m	40–400 µm	0.1–10 kHz	1 pAk–1 nAk
−4 to −2	Pico	0.1–1 m	4–40 μm	1–100 kHz	1 fAk–1 pAk
6 to4	Femto	1–10 cm	0.4–4 μm	10–1,000 kHz	1 aAk–1 fAk
-8 to -6	Atto	1–10 mm	0.04–0.4 μm	1-100 MHz	1 tAk–1 aAk

Table: Bohnhoff et al., 2010, paper in "New Frontiers in Integrated Solid Earth Sciences"

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

European Center for Geodynamics and Seismology

Berlín Geothermal field

^{• 12 3}C borehole sensors used

- 581 events analyzed
- Interesting study to see how attenuation affects the scaling relations

Kwiatek et al., 2012, Special issue of Geothermics(submitted)

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

European Center for Geodynamics and Seismology

Source parameters using spectral fitting

• Inversion for seismic moment, source radius and attenuation

European Center for Geodynamics and Seismology

Source parameters using spectral fitting

• Trade-off between source radius and quality factor resulted in problems with interpretation of results (broad scatter of $\Delta\sigma$)

HELMHOLTZ CENTRE POTSDAM GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

Kwiatek et al., 2012, Special issue of Geothermics (submitted)

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

Spectral ratio method

- Applied to clusters of data (similar location and travel paths from EQ to receiver)
- Propagation effects effectively supressed by forming spectral ratios

$$\Psi^{ij}(f) = \frac{\dot{u}^{i}(f)}{\dot{u}^{j}(f)} = \frac{M_{0}^{i}}{M_{0}^{j}} \left(\frac{1 + \left(\frac{f}{f_{c}^{j}} \right)^{4}}{1 + \left(\frac{f}{f_{c}^{i}} \right)^{4}} \right)^{0.5}$$

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

European Center for Geodynamics and Seismology

Source parameters using spectral ratio refinement

- Strong improvements in the quality of source parameters
- Trade-off between Q and F₀ responsible for scaling problems

Kwiatek et al., 2012, Special issue of Geothermics(submitted)

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

European Center for Geodynamics and Seismology

Volcanic-hybrid EQs

- Analyzed 6073 events related to spine extrusion at Mt. St. Helens (data Sep 2006)
- Source parameters of >500 events calculated using the spectral ratio technique.

[See next talk by R. M. Harrington!]

Harrington et al., (in prep.)

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

European Center for Geodynamics and Seismology

Volcanic-hybrid EQs

- Spectral fitting and spectral ratio method applied to 8 families
- \bullet Constant $\Delta\sigma$ observed for events originating from similar locations
- Velocity inhomogeneities influences observed stress drops

European Center for Geodynamics and Seismology

JAGUARS project: scaling of picoseismicity

- Mponeng deep gold mine, underground in-situ geomechanical laboratory
- Aim: Investigate the rupture process from nano- to picoscale (m cm source size)

European Center for Geodynamics and Seismology

JAGUARS project: scaling of picoseismicity

- Source parameters calculated for two types of data (M_W -4.1 to -0.8)
- Analysis: Spectral fitting / spectral ratio

Davidsen et al., 2012, PRL 108; Kwiatek et al., 2011, BSSA 100 (3); Kwiatek et al., 2011, BSSA 101 (6)

European Center for Geodynamics and Seismology

JAGUARS project: scaling of picoseismicity

• Earthquake rupture process governed by similar physics over a range of magnitudes (-0.8 and -4.1): supported by G-R relations, dynamic and static source parameters and statistical analysis of magnitude clustering and interevent time intervals.

ECGS Workshop 2012, Luxembourg, October 3-5, 2012

European Center for Geodynamics and Seismology

Slow rupture processes, $\Delta\sigma~\&~\sigma_{\rm a}$ dependendent on local geology

- Low rupture velocities: low P-to-S corner frequency ratio (Collins&Young, BSSA 1990), low radiation efficiency (Brodsky & Kanamori 2004)
- Local variations in $\Delta\sigma$ and σ_a clearly depend on geological setup (~V_R)

European Center for Geodynamics and Seismology

Non-DC components in nano/picoscale

- Low E_s/E_P ratio observed possible non-DC rupture processes
- P-wave energy cannot be ignored while estimating radiated energy

Kwiatek and Ben-Zion, in prep.; Kwiatek & Ben-Zion, proc. EGU2012

European Center for Geodynamics and Seismology

- Scaling relations in laboratory experiments
- Fractures < 1mm (expected magnitude M < -6)
- Challenge: AE sensors not calibrated in absolute sense, coupling issues
- Only relative methods apply for source parameters estimation

European Center for Geodynamics and Seismology

Static scaling for compaction band experiment

- Investigated 5 clusters of AE activity in a compaction band (116-212 events)
- Spectral ratio inversion used

Summary

- Spectral ratio method applied to a few datasets including natural, mining- and fluid-induced seismicity and AE data
- No scaling breakdown observed down to at least M_w -4.1

Summary

• Apparent breakdown of self-similarity due to insufficient attenuation corrections

(Mt. St. Helens, Berlin Geothermal Field, JAGUARS project)

- Evidences for slow rupture process (JAGUARS, Rudna Copper Mine)
- Local rock properties affect scaling relations (e.g. stress drop / apparent stress)

(~rupture velocity, JAGUARS project)

 Non-DC components affect radiation pattern. Need to account for radiated energy from P phases while calculating the total energy

(JAGUARS project)

HELMHOLTZ CENTRE POTSDAM GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

European Center for Geodynamics and Seismology

Thank you for your attention!

HELMHOLTZ CENTRE POTSDAM GFZ GERMAN RESEARCH CENTRE FOR GEOSCIENCES

ECGS Workshop 2012, Luxembourg, October 3-5, 2012