Earthquake scaling relationships estimated from a 20 year catalogue of source models derived from InSAR data

Gareth Funning University of California, Riverside

with Jennifer Weston, Ana Ferreira University of East Anglia John Elliott, Barry Parsons University of Oxford

Outline

- InSAR for the uninitiated
- Why might we use it for scaling?
- The ICMT catalogue
- Moment–length, slip–length scaling

Interferometric Synthetic Aperture Radar

An unusual seismometer

- not coupled to the ground
- measures displacement directly
- it samples every 3000000 s (if you're lucky)
- smallest detected event: M_w4.7

InSAR: how it works

Pass 1

Pass 2

InSAR: how it works

InSAR: how it works

2008 Wells, Nevada

each cycle of blue => yellow => red = 28 mm of displacement away from the satellite

10 km

What controls earthquake size?

same plots with length as the independent variable (horizontal axis)

1997 Manyi, Tibet

Using InSAR for scaling

Fault length and surface slip, in many cases, can be measured directly from the data

Funning et al. (2007)

Talebian et al. (2004) Funning et al. (2005)

Insar Centroid Moment Tensor

Date	Location	M_0 (×10 ¹⁸ N m)	Lat (deg)	Long (deg)	Depth (km)	Strike (deg)	Dip (deg)	Rake (deg)	Туре	Data	Reference
24.02.04	Al Hoceima, Morocco	6.20	35.14	356.01	10.05	295.4 ± 1.1	87.4 ± 1.5	-179.2	SS	Ι	Biggs et al. [2006]
24.02.04	Al Hoceima, Morocco (DS)	7.40	35.14	356.00	8.80	295.0	88.0	-179.0	SS	Ι	Biggs et al. [2006]
24.02.04	Al Hoceima, Morocco	5.88	35.17	355.98	6.90	339.5	88.0	178.0	SS	OI	Tahayt et al. [2009]
24.02.04	Al Hoceima, Morocco (DS)	6.60							SS	Ι	Akoglu et al. [2006]
24.02.04	Al Hoceima, Morocco (DS)	6.80					88.0		SS	Ι	Cakir et al. [2006]
24.10.04	Niigata, Japan	13.99	37.30	138.83	4.70	200.0	45.0	72.0	th	I	Ozawa et al. [2005]
22.02.05	Zarand	6.70	31.50	56.80	4.65	266.0	67.0	105.0	th	I	Talebian et al. [2006]
	Iran	±0.2			±0.3	± 1.0	±2.0	± 2.0			
20.03.05	Fukuoka-ken	7.10				298.0	79.0	-18.0	SS	GI	Nishimura et al. [2006]
	Seiho-oki, Japan										
20.03.05	Fukuoka-ken (DS) Seiho-oki, Japan	8.70							SS	GI	Nishimura et al. [2006]
13.06.05	Tarapaca, Chile	580.00				189.0	24.0	-74.0	n	OI	Peyrat et al. [2006]
08.10.05	Kashmir (DS)	336.00	34.29	73.77		321.5	31.5		th	Ι	Pathier et al. [2006]
27.11.05	Qeshm Island, Iran	1.27 ± 0.07	26.77	55.92	6.00	267.0 ± 2.0	49.0 ± 4.0	105.0 ± 5.0	th	Ι	Nissen et al. [2007]
31.03.06	Chalan-Chulan, Iran	1.70	33.67	48.88	4.80	320.0	60.0	180.0	SS	Ι	Peyret et al. [2008]
31.03.06	Chalan-Chulan, Iran (DS)	1.58				320.0	60.0	180.0	SS	Ι	Peyret et al. [2008]
25.03.07	Noto Hanto	14.52	37.22	136.66	6.00	50.7	53.5	150.0	th	GI	Ozawa et al. [2008]
25.03.07	Noto Hanto (DS)	11.09				50.7	48.0	115.0	th	GI	Fukushima et al. [2008]
15.08.07	Pisco, Peru	1900.00	-13.89	283.48	30.00	316.0	11–25	71.0	th	SI	Pritchard and Fielding [2008]

Table 3. Same as Table 1 but for Earthquakes Occurring Between 2004 and 2007

70+ events studied

70+ events studied

Jonsson et al. (2002)

Fault length (m)

Summary of findings

- For all events, $M_0 \propto L^{1.8}$
- Strike-slip events: M₀ ∝ L^{1.6}
- Thrust events: $M_0 \propto L^2$
- A change in scaling is not required to fit the data
- Slip to length ratios vary by 2 orders of magnitude; relationship with recurrence rate?

SENTINEL-1A and -1B European Space Agency Launch Q2 2013, 2015

6 day repeat in same orbit mean post event wait => 3 days ascending + descending => mean wait < 3 days