

Uncertainty Quantification in Earthquake Source Studies:

The SIV-Initiative and its Implications for Source Parameter Estimation

SIV = Source Inversion Validation

Overview

The Source Inversion Validation (SIV) project

Source Inversion Validation

Source parameters from finite-fault rupture models

- Finite-source inversion are done routinely today, using a variety of inversion / modeling approaches, different data sets and processing steps
- We use the slip models to infer rupture dynamics, for source-characterization for ground-motion simulations, to perform Coulomb stress modeling, etc. pp
- If multiple slip-inversion solutions exist for a single earthquake we often find striking differences in the slip maps!

A suite of models for the 1999 Izmit (M 7.5) earthquake

The Source Inversion Validation (SIV) project

- Cooperative initiative for (code) verification and (inversion) validation
- Goal: rigorous uncertainty quantification in earthquake rupture modeling
- several workshops since 2008, following the 2006/2007 SPICE "blindtest" for earthquake source inversion

Strategy

- Develop a series of benchmarks with varying degree of complexity, with and without "noise" in the data (and perhaps in some of the input parameters)
 - 4 forward-modeling tests and 2 inversion problems are available (3rd to be released Oct 2012)
- All benchmarks remain accessible for all interested users; only for the most recent test the solution (input model) is not released

Online list of all benchmarks

RODUCTION	BENCHMARKS	UTILITIES	WIKI	FAQ	ABOUT		sername	•••••	login
Please login to upload your own solutions, edit your solutions and see non public solutions		Benchmarks crack-like simple dynamic rupture Benchmark id: inv1 wiki page: http://eqsource.webfactional.com/wiki/index.cgi/inv1							
		Dynamic strike-slip rupture on 80-deg dipping fault list solutions for this problem							
	:	Station Predictions plot superimposed solutions, comparison matrices and dendrograms for this problem plot envelope and phase misfits for this problem							
	:	Source models plot solution contours superimposed plot solution grid comparison							
		Strike-slip (point-se	ource					
		Benchmark i wiki page: h Point-source li st solutio r	d: ssp0 ttp://e on a ve ns for t	rtical s	r ce.web i strike-slip oblem	actional.com/wiki/index.cgi/ssp0 fault with purely right-lateral motion			
	:	Station Predi plot superin plot envelo	ctions mposed pe and	l solut	tions, co e misfits	mparison matrices and dendrograms for this for this problem	problem		

Step 0: Green's Function Validation

- Forward problem: are we able to compute the Green's function correctly?
- The SIV-project started with a zero-order test to verify GF-computations:
 - point-source at 10 km depth, parameterized as a 1 x 1 km² slip patch with homogeneous slip and boxcar slip-function of duration $\tau_r = 0.2$ sec
 - The shear-modulus at the given depth result in: $M_w 4.992$, $M_0 = 3.4992 \times 10^{16}$
 - Two cases: left-lateral strike-slip on vertical fault; thrust-faulting on 40° dipping fault

Time – s

Source Inversion Validation

Time – s

Strike-slip points-source, single site

Time – s

Waveform Comparison for strike-slip point source - Station10 - Frequency range [0 - 5Hz]

Time-frequency envelope

TFEM ssp0 005 x maiCS and maikaes

10

Strike-slip points-source, single site,

two methods

- M ~ 6.5 strike-slip earthquake on 80° dipping fault
- 40 sites for which waveforms are provided; at 16 additional sites "blind" predictions are required
- Earth model: 1D layered structure (same as in the Green's function test)

The dynamic rupture model: random initial stress, depth-dependent normal stress, slip-weakening with Dc = 0.4 (increasing to the edges for smooth termination)

1.5

0.5

0

The dynamic rupture model: random initial stress, depth-dependent normal stress, slip-weakening with Dc = 0.4 (increasing to the edges for smooth termination)

Source models

dynamic slip & rupture time & rise time

Source model comparison

Dynamic strike-slip rupture on 80-deg dipping fault

0.08

Example: a "simple" dynamic rupture

inv1 001 x

 Graphical waveform comparison (at 1 Hz):

stations used for inversion

forward-predicted sites

time(s)

Time-frequency envelope and time-frequency phase misfit (left) and goodnessof-fit (right) for two solutions, at one site for horizontal components

- Differences in inferred slip; similar rupture timing; rise times poorly determined
- Overall good waveform fits at ~1 Hz
- What is needed to improve these solutions?
 - Static displacements as additional constrains? Any other data?
 - Revisit the impact of the assumed slip-rate function?
 - Is the dynamic model too complicated? Too unrealistic?
- Need additional analysis to fully comprehend what causes the differences
 - Map various goodness-of-fit measures to check how misfits vary spatially
 - Examine the actual local slip-rate functions (from the modelers and the dynamics)

SIV: The next steps

- Develop & disseminate additional benchmarks
 - add noise to synthetics; withhold initial information or report slightly incorrect parameters; random variations in the velocity model
- Create larger data sets (GPS, InSAR, teleseismic)
- Expand online submission & comparison tools
 - Error reporting; some flexibility in formatting
 - Quantitative assessment of waveform & model performance

Motivate more source-modeling teams to participate & contribute

email: martin.mai@kaust.edu.sa

account@eqsource.webfaction.com

Improved online accessibility

The SIV benchmarks and the upgraded SRCMOD database have moved to a common web-site for improved accessibility

equake-rc.info / equake-rc.org / equake-rc.net

Overview

The Source Inversion Validation (SIV) efforts

Source Inversion Validation

Source parameters from finite-fault rupture models

Exploit database of rupture models

Slip patches ("asperities") and stress-change on the fault

How to quantify / define an asperity in such slip models?

- Somerville et al (1999): regions in which
- Mai et al (2005): large-slip

 $1/3 \cdot D_{max} \le D < 2/3 \cdot D_{max}$

 $D > 2 \cdot D_{ave}$

very-large slip

 $D \ge 2/3 \cdot D_{max}$

0 -10

-20

-30

Source Parameters from finite-fault models

Slip patches ("asperities") and stress-change on the fault

Slip patches ("asperities") and stress-change on the fault

• Parkfield repeater (Mw 2.1): stress drop averaged over fault ~11MPa where stress drop

> 0 roughly consistent with spectral estimate by Imanishi et al (2004)

Dreger et al, 2007

- Area-moment scaling in finite-fault models: scale invariant ($M_0 \propto 2/3 \cdot A$)

Area-moment scaling of asperity regions is NOT scale invariant

- Iarge-slip asperities occupy ~25% of fault plane, releasing ~40% of the total moment
- very-large-slip asperities occupy ~10% of the fault, releasing ~25% of the total moment

Stress-drop estimates over the fault

Stress-drop estimates using on the regions of large and very-large slip

• Considering the entire fault plane, the average stress-drops are on the order of 1 MPa ($\Delta \sigma_{esb}$, $\Delta \sigma_{ave}$), and about 5MPa over the regions of pos. stress-drop

Considering the asperity regions, stress drops are 7MPa – 15 Mpa

Summary

In the light of the scaling debate, which aspects of the kinematic (dynamic) rupture model are captured by spectral estimates of stress drop?

Source Inversion Validation

Improved finite-fault inversions, including proper uncertainty quantification, are needed to better understand rupture dynamics and to link the various measures of earthquake source properties