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The ”Double Stochastic Fault Model” (DSFM) is proposed 

in order  to explain 3 common properties of earthquakes: 

•  (1) ω -2  [“omega-square”] shapes of (displacement) 
source spectra                             [Aki 1967; Brune 1970]  
 

[or, equivalently, flat acceleration source spectra  
                              [Brune 1970; Hanks&McGuire 1981]] 

 
•  (2)  two-corner (ω 0 –ω -1 –ω -2) source spectra  

(typical for larger magnitudes)         [Brune 1970;Gusev 1983] 

•  (3) frequency-dependent directivity  
    [e.g. Somerville 1999] 

these three properties are well-known,  
all three lack consistent theoretical explanation 
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Empirical scaling laws for Fourier acceleration spectra, with flat HF part 
they approximate source acceleration spectral shapes shapes 

note clear two-corner spectral shapes  
with gap between corners increasing with magnitude 

↓  attenuation- 
related 
f-max 

W.USA model 

Atkinson 1993 

Trifunac 1994 
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Period/frequency dependence of the average directivity factor  
 of response-spectrum acceleration RSA (RSA ≈ peak of narrow-band-filtered acceleration)  

for a set of angles between forward direction of propagation and the ray to receiver  

T=                   sec 

f=   100                           10                           1                          0.1 Hz 

 
 

forward 

backward 

Xcos(theta): 
X measures degree of 

unilaterality  
(0 for bilateral) 
theta is  anglular deviation  

from 
 forward direction (0 to 180) 
 

 Somerville et al 1997, SRL 
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Key components of DSFM 

•  1. Final (local) stress drop field Δσ(x,y) on a fault :  
                      random, fractal                 [Andrews 1980] 

 
•  2. Rupture-front structure at high k, locally:  

          random, fractal, disjointed, tortuous       [Gusev 2012]; 
 
•  3. Rupture-front propagation mode at low k, [smoothed picture]: 

        systematic, following the concept of  running slip pulse 
      [Heaton 1990; Haskell 

1964,1966] 
•  4. Formation of seismic waves:  

 according to the fault asperity failure model    
          [Das&Kostrov 1983,1986; Boatwright 1988] 
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The stochastic/random component #1 of the DSFM (time-independent) : 
local stress drop Δσ (x, y) field  [Andrews 1980]  

 
 Δσ (x, y) is a random (assumedly isotropic) 2D 
field, defined through its power spectrum P(k), or 
through mean amplitude spectrum S(k) ∝ P0.5(k) 
[Andrews 1980]     (k=|k|) 

•  S(k) is power law (S(k) ∝k-β ) [self-affine, or 
broad-sense self-similar or fractal behavior] 
[Andrews 1980]; and in particular: 

•  β=1 and S(k) ∝ k-1   [narrow-sense self-similar 
behavior] [Andrews 1980]  

•  Δσ (x, y) is rigidly tied to final dislocation/slip 
field D(x, y) [with spectrum ∝k-β -1 ] 
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The stochastic component #2 of the DSFM (defines space-time evolution): 
 local rupture-front structure at high k    [Gusev 2012]  

 
•  defines time history of rupture through  
rupture front arrival time  

 tfr(x, y)  
•  tfr(x, y) has  “lacy” general appearance, with: 
       (a) tortuous or wiggling isolines  
       (b) fragmented, with “islands” and “lakes”  
 

•  tfr(x, y) can be  represented as superposition of  
(1) smooth [low-k] global/“macroscopic” rupture 
propagation, with well-defined rupture velocity 
(traditional element); and  
 (2) random high-k local/“microscopic” rupture 
propagation at random directions (novel element; 
creates incoherence) 

hypo- 
center 

example isolines of  tfr(x, y) 
shading: the later, the lighter 



local rupture-front structure at high k    (cont. 1) 
 

tfr(x, y): original,  tfr(x, y): smoothed,  

profile: yellow line:  
t(x) non-monotonous 
x(t) multiple-valued 

profile: yellow line: 
t(x) monotonous 
x(t) single-valued 

Creating tfr (x,y)  

                         tfr (x, y) =R (x, y) + S (x, y)   
R (x, y):    random self-similar, spectrum ∝1/kδ ; δ=1-1.5;  
S (x, y):     smooth; deterministic term with constant velocity + 

perturbation 
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low-k part 
 only  

isolines  
continuous 

full  
k-spectrum 

isolines  
fragmented 



The cause of incoherence is manifested in local rupture front orientation 
Color code: local direction of rupture-front normal 

incoherent case (used in simulation) 
 

coherent case (not used, example only) 
 

local rupture-front structure at high k    (cont. 2) 
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Component #3 of the DSFM (non-stochastic): 
 ”slip-pulse” rupture propagation, with healing front [Heaton 1990]  

•  detailing time history of rupture  
  through healing front evolution  
 

•  introducing critical parameter 
  “relative pulse width” 

 
where:   L is fault length;     
               l is slip pulse width 
 
in other terms 

where:  
    Trise is rise time;  
    vrup is (mean) rupture velocity; 
 

rup

rise
H vL

TС
/

=

L
lСH =

typical values of CH :    
           around  0.1 [Heaton 1990] 
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Component #4 of the DSFM:  Using fault asperity failure theory 
 [Das&Kostrov 1983,1986; Boatwright1988] to describe body wave 

generation 

Case 1: infinite fault 
 
 
Fault-guided waves (P, inhomogeneous S and R) go to infinity 

Case 2: finite fault 
 
with specific G(t)=G(t,x,y), of zero integral and of duration on the 

order 2Rr/cR   
 

Fault-guided waves (P,S and R) diffract/transform  to regular body waves 
at the boundary and die off 

Consider failing fault spot dS at position (x, y) on a fault Σ surrounded by a region of negligible cohesion:  
infinite (Case 1) or finite, size 2Rr (Case 2). Rupture front arrives to dS at time tfr. 

For far-field SH body wave, consider velocity time history on along-normal ray: )/,( S
SH cRtu +ξ
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Fault asperity failure theory, continued: far field body waves 

Case 1: infinite fault with asperity dS 
 

infinite seismic moment 
 

Case 1: finite fault with asperity dS 
seismic moment is on the order 
dMo = 2Rr dF 
where dF is seismic force 
dF=Δσ(x, y) dS 

displacem
ent      velocity 

displacem
ent      velocity 

Note that abruptness of pulse front causes 
formation of accurately ω-1 factor to source 
spectrum  

2Rr 
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Key assumption 
 is made here 

 to justify the application  
of Das-Kostrov theory: 

a low-cohesion spot (of size 2Rr )  
can be associated   

with a piece of slip-pulse strip 
                                (of width l) 
    and corresponding sizes 

 are close one to another: 
 

2Rr ≈ l 
 
 

For each rupture front element dS,  
there is an individual, corresponding low 
cohesion/slipping patch 



Two possible ajustments may be needed; both ignored in 
further simplified simulation 

•  Along-front size of slipping spot above l:  
                                as there is more free space for alog-fault waves to propagate  

•  Across-width size of slipping spot below l:  
         as the healing front does not stand and approaches at comparable velocity 
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More simplifications adopted in simulation: 
• Stress drops instantly at the arrival of rupture 

front (slip-weakening distance / cohesion length: very small) 

• Only SH waves are considered 

• Trise or l vary only weakly over fault area 

•   Function G(t,x,y) is identical for all fault spots 
( G(t,x,y) = G0(t) ) 

G0(t) ) 

Trise  
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Simulation stages  
the accepted parameter values in parentheses 

• (a) select source rectangle (38 ×19 km),  
     nucleation point etc 

• (b) set control parameters: 
     β (1.0), CH (0.06), CVΔσ (0.8), δ (1.4);  

• (c) generate sample random fields 
     tfr (x, y) and Δσ (x, y);  

• (d) calculate time functions at a receiver for 
     the cases of infinite and finite fault  

• (e) determine  
    normalized displacement spectrum   
    and associated acceleration spectrum  

. 
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Simulation: example signals and spectra 

←ten spectra, 
        averaged 

•  Receiver position is assumed to be 
positioned at the along-normal ray 
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18 

} 
 } 

Simulation: how spectral shapes depend on CH=l/L 

shown: averages over 50 runs 

 

clear 2-corner shapes  
at CH ≤ 0.05 
 
apprx. classical  
“omega-square” at 
CH ≈0.06-0.10 
 

“ω -1 ” 

intermediate 
slope 

Example scaling: 
 of fc2  and 
 of HF spectral level AHF: 

fc2 /fc1 ≈ 0.2/CH 

AHF/A1HF ≈ 0.063/CH
  

Receiver position is 
assumed at 
along-normal ray 
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  “ω-1 ”  part: 
expressed  
   directivity 

}  
 “ω-2 ”  part : 
decaying 
directivity 

}

          fc2 
independent of 

direction        fc1 
varies with 
direction 
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Simulation: spectral shapes depending on receiver position w.r.t. mean 
rupture propagation direction; note frequency-dependent directivity  

forward 

back- 

ward 

Observed, M=6-7  
Somerville et al 1997, SRL 

90 deg 

vrup /cS =0.85 

M ≈ 6.7-6.9 
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Conclusions 
•  1. The proposed approach permits to reproduce, through 

numerical modeling, the following observed features of radiated 
earthquake waves:  

 - ω-2 HF spectral slope;  
 - 2-corner spectral shapes, and  
 - frequency-dependent directivity (high at LF, low at HF) 

•  2. To achieve this result, “double stochastic fault model” is 
proposed, that incorporates two self-similar/fractal structures, 
one in spatial domain, and another in space-time domain 

•  3. The presented model is kinematic and numerical. It is 
however versatile and can be adapted for practical strong 
motion simulation 


