

### CONSTRAINTS ON FAULT PROPERTIES OF TOHOKU-OKI RUPTURE ZONE

From Integration of Observations and Dynamic Rupture Models

Yihe Huang, Jean-Paul Ampuero, Hiroo Kanamori Caltech Seismo Lab Oct. 5th, 2012

### More Interactions Needed!

### **Dynamic Rupture Modeling**



### **Observational Seismology**



### Ishinomaki before and after Tohoku-Oki EQ



1. Introduction 2. Dynamic Rupture Models 3. Conclusions

# 2011 Tohoku-Oki Earthquake: Slip reaches the shallower region







1. Introduction 2. Dynamic Rupture Models 3. Conclusions

## 2011 Tohoku-Oki Earthquake: Slow down-dip rupture with HF bursts



## 2011 Tohoku-Oki Earthquake

- Large slip reaches the shallower region, and possibly extends to the trench.
- The rupture velocity is slow in the downdip region (~1 km/s). The up-dip rupture probably reaches the trench at ~ 40-80 s.
- The frequency contrast between up-dip and down-dip region is quite large. The power ratio is estimated to be ~ 10 (Huang et al., 2012).

## **Dynamic Rupture Model**

- Our aim is to understand the fault properties and explain the physics behind Tohoku-Oki Earthquake.
- So we start by reproducing the different types of slip profiles, slow down-dip rupture and frequency contrasts.
- We will compare the different fault properties that are implied by the different simulations, especially in terms of energy partitioning.

# A model that can potentially explain the observations with fewest assumptions.



### **Asperity Model**

#### **Stress distributions for Model 1**



### **Results: Slip**

Input



### **Results: Static Stress Drop and Overshoot**





Distance (km)



### **Result: Energy Partitioning**



## **Results: Energy Partitioning**



(e.g., Kanamori and Rivera, 2006)

1. Introductions 2. Dynamic Rupture Models 3. Conclusions

### **Results: Radiation Efficiency**

Models:



Observation:  $\eta_R = (2\mu/\Delta\tau) (E_R/M_0)$   $\approx (2 \times 30 Gpa/6 Mpa) \times (10^{-5})$ = 0.1

### Conclusions

- Observations are reproduced with a simple model.
- Once the hypocenter region is broken, the rupture can easily propagate to the shallower region even with negative stress drop, because of the wedge structure.
- The down-dip region is likely to have small asperities, which slow down the rupture and make high frequency bursts.
- The radiation efficiency from 2D model is higher than the observed value. Another dissipation energy mechanism is needed.