Inference of the 2004 Parkfield co-seismic slip distribution via joint
inversion of GPS and aftershock data
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e No off-fault aftershocks. Simple and well
resolved fault plane — easy to model.

e Microseismicity occupies a small fraction of the

fault plane

e The before and after spatial distributions are

Introduction: Parkfield

-120.50

36.00 -

9 months of seismicity

similar
0 !
L
Red = 5000 days before E:
?
Blue = 1 day after § 10 -
<
15
40

along-strike [km]

Aftershocks location are from Thurber et al. (2006)

- 36.00

- 35.75



Introduction: The GPS data
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The shortcoming of GPS inversions: Inversion result

e Excellent fit to the data over a wide
range of smoothness coeff.

e The moment magnitude is well resolved.
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The shortcoming of GPS inversions: Inversion result
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The joint GPS and aftershock data: Stress vs. aftershocks distribution in the models

Precise earthquake locations are
from Thurber et al., 2006
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e About 70% of the aftershocks are in areas

that have experienced stress decrease —

what does it mean???
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The joint GPS and aftershock data: Constitutive stress — earthquake rate relation
(based on Dieterich 1994)
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The joint GPS and aftershock data: Constitutive stress — earthquake rate relation
(based on Dieterich 1994)
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The joint GPS and aftershock data: The set of equations

We solve for u via simultaneous solution of:

1. Ground displacement WGu = Wd

2. Smoothing PAu =0

3. Stress distribution (inferred from yﬁKu = yﬁr
aftershock distribution)

* vyisasarelative weight ratio that accounts for the length difference of the two data vectors

/

e Equations 1, 2 and 3 are solved for u, using the NNLS algorithm.
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

000 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

001 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

002 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

003 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

004 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

100 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

393 iterations
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The joint GPS and aftershock data: The grid

The fault plane is discretized non-uniformly using a quadtree algorithm (Budiman et al., 2007):

393 jterations + refinement
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The joint GPS and aftershock data: Inversion result

Preferred solution

eQur joint inversion provides an upper bound on the frictional properties of fault patches that
have experienced aftershock activity.

*We find that satisfying fit to both aftershocks and GPS data sets can only be obtained for a
constitutive friction parameter that is more than an order of magnitude lower than the
laboratory values.



The joint GPS and aftershock data:
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*A consequence of the irregular aftershock distribution is that the slip distribution is extremely

non-smooth, with the aftershock zones acting as barriers.

*The preferred model shows significant slip near the hypocenter.



The joint GPS and aftershock data: Inversion result
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Conclusions:
e |t is possible to find a slip model that satisfies both geodetic and aftershock datasets.
e Use of aftershock data enhances the resolution.

e Experimentally obtained a values cannot explain aftershock distribution — more than 1 order
of magnitude smaller values can.

THANK YOU!
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