Friction on faults and scaling laws: hypotheses, dynamic models, and comparisons against lab experiments

Luca Malagnini¹, Irene Munafo'¹, Massimo Cocco¹, Stefan Nielsen¹, Elena Spagnuolo¹, Seung-Hoon Yoo², and Kevin Mayeda³

> ¹Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy ²University of California Berkeley, Berkeley, CA, USA ³Weston Geophysical Corporation, Lexington, MA, USA

Borrowed from Bill Walter

Self-Similar Earthquake Scaling

Implicit $\Delta \sigma$ and V are constant

$$M_o \sim \Delta \sigma L^3 \sim \Delta \sigma V^3 \tau^3 \sim (\Delta \sigma V^3) f_c^{-3}$$

Product $\Delta \sigma V^3$ is constant

(see also Prieto et al 2004; Kanamori and Rivera, 2004)

Borrowed from Bill Walter

Non-self-similar earthquake scaling: Case of same spectral shape but different corner frequency behavior

1) Changes in $\Delta \sigma$ and/or V with size (e.g. large have higher $\Delta \sigma$ and/or V than small)

Kanamori and Rivera (2004): $M_o \sim f_c^{-(3+\varepsilon)}$ $\tilde{e} \sim M_o^{\varepsilon/(3+\varepsilon)} \sim (\Delta \sigma V^3)$

2) Changes in efficiency with size

(large more efficient than small)

Constant moment shear crack spectra for different seismic efficiencies Displacement Amplitude (cm-s) Mo~low freq. (max) level = 0.5 $\frac{E_R}{\Delta W} = \frac{\left(\Delta W - E_F - C\right)}{\Lambda W}$ E_s~Area (velocity-spectra)² (after Walter and Brune, JGR 1993 10⁻⁵ 8 2 6 8 100 10 10 Frequency (Hz)

Central Apennines: observed and predicted ground motions of two events of the Colfiorito sequence (M_W 5.91 & 4.29). A regional attenuation (geometric & anelastic) and a magnitude-dependent stress parameter ($\Delta \sigma_{\rm B}$) are used to match the observed ground motion through RVT (from Malagnini et al., 2008).

Here is what happens when you try to predict the ground motion using self-similar scaling (Wells, NV)...

Here is what happens when you try to predict the ground motion using self-similar scaling (Wells, NV)...

How can we relate seismic observations to fault dynamics? Hypothesis of constant rupture velocity... Increased stress drop means:

a) more energy available for radiation;b) less dynamic friction on fault...

Defining the fracture energy, G:

S

slip (s)

а

stress (o)

σο

σ·

0

Es/A

$$G(S) = \int_0^S \left(\sigma_F(u) - \sigma_d\right) du$$
$$G(S) = \frac{1}{2} \left(\Delta \sigma - 2\sigma_a\right) S$$

From now on, we assume no overshoot or undershoot, and that peak stress is equal to initial stress...

From Abercrombie and Rice (2005)

$$\sigma_F(S) = \sigma_0 - \frac{n}{n-1}G_0S^{n-1}$$

$$\sigma_F(S) = \sigma_0 - \frac{n}{n-1}G_0S^{n-1}$$

$$\sigma_F(S) = \sigma_0 - \frac{n}{n-1}G_0S^{n-1}$$

From fracture energy to stress history... (two weakening models)

From Abercrombie and Rice (2005)

$$\frac{dG(S)}{dS} = -s\frac{d\sigma_F(S)}{dS}$$
$$\sigma_F(S) = -\int \frac{1}{S} \frac{\partial G(S)}{\partial S} dS$$

From fracture energy to stress history... (two weakening models)

$$\frac{dG(S)}{dS} = -s\frac{d\sigma_F(S)}{dS}$$
$$\sigma_F(S) = -\int \frac{1}{S} \frac{\partial G(S)}{\partial S} dS$$

1) Polynomial weakening (Abercrombie & Rice, 2005):

$$\sigma_F(S) = \sigma_0 - \frac{n}{n-1}G_0S^{n-1}$$
$$G(S) = G_0S^n$$

From fracture energy to stress history... (two weakening models)

From Abercrombie and Rice (2005)

$$\frac{dG(S)}{dS} = -s\frac{d\sigma_F(S)}{dS}$$
$$\sigma_F(S) = -\int \frac{1}{S} \frac{\partial G(S)}{\partial S} dS$$

1) Polynomial weakening (Abercrombie & Rice, 2005):

$$\sigma_F(S) = \sigma_0 - \frac{n}{n-1}G_0S^{n-1}$$

 $G(S) = G_0 S^n$

2) Exponential weakening (e.g., Rice, Sammis & Parson, 2005): $\sigma_F = \sigma_{S-S} + (\sigma_0 - \sigma_{S-S}) \exp\left(-\frac{S}{D_C}\right)$ $G(S) = \int_0^S (\sigma_F(u) - \sigma_F(S)) du$ $G(S) = \left[D_C - \exp\left(-\frac{S}{D_C}\right)(D_C + S)\right] \Delta \sigma$

From fracture energy to stress history...

From fracture energy to stress history...

From fracture energy to stress history...

Computing normalized shear stress for earthquakes...

Computing normalized shear stress for earthquakes...

Weakening curves...

Polynomial weakening:

$$\frac{\sigma_F(S)}{\sigma_0} = 1 - \frac{n}{\sigma_0(n-1)} G_0 S^{n-1}$$

Exponential weakening:

$$\frac{\sigma_F(S)}{\sigma_0} = \frac{\sigma_{S-S}}{\sigma_0} + \frac{\Delta\sigma}{\sigma_0} \exp\left(-\frac{S}{D_C}\right)$$

Comparison against lab experiments...

Comparison against lab experiments...

Summary & Conclusions

We computed fracture energy vs. slip(G(S)) for ~300 earthquakes from 20 seismic sequences occurred worldwide;

Within an individual sequence:

- Fracture energies of small events: power law & polynomial weakening $\left(G(S) = G_0 S^n; \sigma_F(S) = \sigma_0 - \frac{n}{n-1}G_0 S^{n-1}\right);$
- Fracture energies of large earthquakes suggest shear stress saturation;
- Polynomial stress-slip function: first approximation of exponential weakening $\left(\sigma_F = \sigma_{S-S} + (\sigma_0 - \sigma_{S-S}) \exp\left(-\frac{S}{D_C}\right)\right);$

Seismology & Lab:

• Interesting comparison...

Magnitude-dependent correction parameter...

Wells: evidence of non self-similar scaling from ground motion analysis

