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On Gofar Transform Fault on the East Pacific Rise, we observe relatively stable N T km * strong-motion
rupture patches over four seismic cycles. These rupture patches are separateq PY ' ocean botiom seismometer 0 10 20 acceleromete
M _ 6.0 earthquakes that occur approximately every 5 years. The rupture patches airg Plus strong-mofion aceelerometer ® M,3.0
separated by regions of very low coupling which host swarms of microearthquakes. -4.4 @ M 4.0

In 2008, McGuire and coworkers captured the end of a seismic cycle with an ocean = rUptUre barrier
bottom seismic array. The dataset includes an extensive foreshock sequence rupture patch

(right, yellow dots), the mainshock and aftershocks (right, red dots), and an
earthquake swarm that occurred three months after the mainshock (right, blue dots)
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B. Earthquake temporal distribution showing the rate of seismicity in the Longitude (W) -6 -5 -4
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C. Along strike variations in earthquake depth in the foreshock, mainshock C Og (Q 0)
and aftershock, and swarm zones [McGuire et al., 2012]. 0 Results for 85 events in the foreshock, aftershock, and swarm zones along Gofar transf
Right: ¥ € fault show log scaled energy values between -6.1 and -3.6 with median values for each
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locations < 5 km, see McGuire 2008) are shown in a constant color. Vertical, N AEE 0 earthquakes in rupture patches and rupture barriers along Gofar transfor
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Intra-transform spreading centers [McGuire e. al., 2012]. et Distance along strike (km) . Scaled energy results for Gofar Transform Fault Comparison to other studiegBaltay et al., 2011]
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We calculate radiated seismic energy using an omega-squared source model, where the corner frequency Is derived from an empiricaljiGreen’s 00 00% %0 %0 2,7 o % .
. . . . . Gl . '5, 090 o o o O o O = °
function (EGF) technigue. We follow the methodvdgas et al.[2010] to find good EGF pairs and compare the results of stacking “high-q %HR/; 00;89 o ° %o s o
. . . . . . . . i v oY@l -
spectral ratios (as defined by the variance In the fit to the corner frequencies of both events) to stacking all station, component data. T o ° o 0
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occurred in the foreshock zone and are  and select pairs with a cross- correlation and pre-event noise (dashed). Bottom: Source time Spectral ratio. from stacking all station, 10-863 e s e i three outliners are shown below.
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