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Self-Similarity: Constant Stress Drop Aki (1967) 

ECSG: Earthquake Source Physics on Various Scales Aki, 1967, JGR 
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“Further, in order to specify an earthquake by 
a single source parameter, ‘magnitude,’ we 
must reduce to one the number of parameters 
appearing in (30) and (31) by assuming they 
are related to each other in some manner.  

The simplest of such assumptions may be 
that large and small earthquakes are similar 
phenomena. If any two earthquakes are 
geometrically similar, the fault width w  is 
proportional to the length L.  If they are 
physically similar, all the nondimensional 
products formed by the source parameters will 
be the same. The average dislocation D0 will 
be proportional to L and, consequently to w. 
This implies that if an earthquake is a Starr 
fracture, the pre-existing stress or strength is 
constant and independent of source size 
[Tsuboi, 1956].”  
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Self-Similarity: Constant Stress Drop Aki (1967) 
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From dimensional analysis
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L
= ! "#

µ
!D
L
= $ "#

µ
VS

“Since the wave velocity is practically 
independent of of source and may be 
considered constant for our present 
purpose, all the quantities having the 
dimension of velocity must also be constant 
and independent of source size. Thus, the 
similarity assumptions imply that the rupture 
velocity v is a constant and that all the 
quantities having the dimension  of time, such 
as ,                              are proportional to L.”  
   kT

!1  and (vkL )!1
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Spectra and Corner Frequency: Brune (1970) 
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Station 2555
Virginia Earthquake, 8/23/2011

The average spectrum is given by:

!s (" ) = R#$ %& / µ( ) r / R( )(" 2 + (2.36& / r)2 )'1

The corner frequency fc = (1 2( )(2.36& / r) = 0.37& / r
At zero frequency, the spectrum must be the same as that from
the double-couple dislocation.

!s (0) = R#$ M 0

4()& 3R( )
or

M 0 =
4()& 3R( ) !s (0)

R#$

Brune (1970, 1971) : fc = 0.37& / r
Madariaga(1976) fc = 0.21& / r
Madariaga(1979) fc = 0.28& / r

Brune, 1970, 1971, JGR 



Stress Drop and Moment 
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Static Stress Drop and Seismic Moment for Three Fault Geometries 
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Lay and Wallace, 1995 

Moment: Aki (1966) 

Slip related to a source dimension: 

Eshelby (1957) Knopoff (1958) Starr (1928) 



Stress Drops 
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Stress drops computed 
with Madariagaʼs k: 0.21 
for S, 0.32 for P"



  Stress Drop: 109 ≤ M0 ≤ 1022 Nm 
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Sigma: Its Effect on Ground Motion 
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Chiou & Youngs 2008
Abrahamson & Silva 2006
Rodriguez-Marek et al. 2012
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Cotton, Archuleta, Causse, SRL 2012 



Heterogeneous Slip (Stress) 
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Landers 1992 Northridge 1994 

Parkfield 2004 

Imperial Valley 1979 



Fault in Homogeneous Medium 
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Stress at a Point on the Fault 
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Stress and Dynamics 
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Stress and Dynamics 
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Fault in Heterogeneous Medium 
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Stress at a Point on the Fault 
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Static Stress Drop, Stress Drop, Apparent Stress 
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If frictional work is zero, the change in potential energy    W  goes entirely into radiated energy  ER .   
When the radiation efficiency is not equal to 1, then 

    

W
M0

a   where  is the radiation efficiency: 
  
ER W  . 

We could also write  
 

  
W ER E f  where 

  
E f f DA  the energy lost to friction with 

   f
 the stress at sliding friction. 

    

M0
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Since     1
2 0 1

1
2 0 0 S 0

S
2
            where   S 0 1

  

    

a f 0 f
S
2

a d
S
2

  

where 
   d  is the dynamic stress drop 

     d 0 f  and 
   a

 is the apparent stress. 



Scaling Between fC and r  
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 fC = kVS r

  !" = 7 M0 16r3 = 7 M0 fC
3 16(kVS )3

 "
V/Vs CP CS k=(CS/2π) Multiplier on stress 

drop 

Andrews*" 0.90" 1.55" 2.86" 0.46" 0.52"

Snoke*" 0.90" 1.73" 2.83" 0.45" 0.56"

Silver*" 0.90" 2.79" 3.65" 0.58" 0.26"

Sato & Hirasawa 
(1973)" 0.90" 1.6" 1.99" 0.32" 1.55"

Madariaga (1976)" 0.90" (3/2)CS—Use VS" 1.32" 0.21" 5.47"

Kaneko & Shearer 
(2012)" 0.90" 0.38—Use VS " 1.63" 0.26" 2.88"

Brune (1970, 1971)"  "  " 2.32" 0.37" 1.0"

* Dong and Papageorgiou, BSSA 2002 



Southern California: M0 vs fC 
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Brune Stress Drops: Southern California 
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Thatcher and Hanks, 1973 JGR 



Stress Drop Based on Area-Moment  
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Mammoth Lakes: M0 vs fC 
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Brune Stress Drops: Mammoth Lakes 
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Archuleta, Cranswick, Mueller, Spudich, 1982 JGR 



Southern California Stress Drops 
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Southern California: M0 vs fC 
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Southern California: >60,000 with ML = 1.5 to 3.1 
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  Stress Drop: 109 ≤ M0 ≤ 1022 Nm 
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Global Earthquakes: M0 vs fC 

ECSG: Earthquake Source Physics on Various Scales Shearer, Prieto, Hauksson, 2006 JGR 

1016 1017 1018 1019 1020 1021 102210

10

100

101

Seismic Moment [Nm]

C
o

r
n

e
r
 F

r
e

q
u

e
n

c
y

 [
H

z
]

log (fC) = –0.38 x log (M0) + 6.28

 = 10 MPa = 0.1 MPa

Allmann and Shearer (2009)



Distribution of Stress Drop 
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Tottori: M0 vs fC 
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Chuetsu-Niigata: M0 vs fC 
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Normal Distribution: Chuetsu-Niigata and Tottori 

ECSG: Earthquake Source Physics on Various Scales Adrien Oth, Dino Bindi, Stefano Parolai and Domenico Di Giacomo, 2010 GRL 
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Stress Drop and Variability from Spectral Studies (M0,fc) 
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Source study" Region" Mean Brune 
stress-drop (MPa)"

Stress-drop 
variability"

(Natural log)"
No. earthquakes "

Allmann and 
Shearer, 2009"

Interplate"
5.5 ≤ MW ≤8" 0.84*" 1.67" 799"

Allmann and 
Shearer, 2009"

Intraplate"
5.5 ≤ MW ≤8" 1.50*" 1.46" 61"

Oth et al, 2010" Japan (crustal)"
2.7 ≤ MJMA ≤8" 1.1" 1.38" 1951"

Rietbrock et al., 
2012" UK" 1.8" 1.38" 273"

Edwards and 
Fah, 2012"

Switzerland 
(foreland)" 0.2" 1.83" 161"

Edwards and 
Fah, 2012"

Switzerland 
(alpine)" 0.12" 1.43" 351"

Shearer et al., 
2006"

Southern 
California"

1.6 ≤ ML ≤3.1"
0.52*" 1.52" 64800"

Margaris and 
Hatzidimitriou, 
2002"

Greece"
5.2 ≤ MW ≤6.9" 6.3" 0.57" 18"

Johnston et al., 
1994" Intraplate" 10" 0.7" ?"

*Published results are divided by 3.95 to take into account the difference 
between a Madariaga (1976) corner frequency/source radius compared to that 
of Brune (1970,1971) and the difference in shear wave velocity.  

Cotton, Archuleta, Causse, SRL 2012 



Variability in GMPE’s 
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9
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P!

Q
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E41*0#8."+34(+<*"1,+&$.0,*."1*81%1".00?*2#$%&*3#*<#%2#"(*3#*.*%#"(.0*
&+,3"+/$)#%*:+34*(1.%*R*.%&*,3.%&."&*&1-+.)#%*SE

%

&*3$4'6I(*G(A8(J*FF'$ Cotton, Archuleta, Causse, 15WCEE 2012"

log (R) 



Variability in GMPE’s 
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<4$"66'$(!"#$%8(LDMMNO

!b is the between-event 
(earthquake-to-

earthquake) variability

!T is the total 
variability

!w is the within-event 
(record-to-record) 

variability

9134#&*O*J*.%.0?K1*341*#/,1"-1&*8"#$%&'(#)#%*-."+./+0+3?

!T
2 = ! b

2 +!w
2

<4$"66'$(!"#$%8(LDMMNO

9134#&*O*J*.%.0?K1*341*#/,1"-1&*8"#$%&'(#)#%*-."+./+0+3?*

The between-event 
(earthquake-to-earthquake) 

variability (!b) is «on the 
first order» controlled by 
the stress-drop variability 

(σln(Δτ))



Inferred Stress Drop Variability from Recent GMPE’s 
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GMPE" Database"
Observed Between 

Event Variability 
(Natural log)"

Inferred Stress 
Drop Variability 

(Natural log) "
Rodriguez-Marek et 
al., 2011" Japan" 0.49" 0.59"

Abrahamson and 
Silva, 2008 (M=5)" NGA" 0.42" 0.50"

Abrahamson and 
Silva, 2008 (M=6)" NGA" 0.36" 0.43"

Abrahamson and 
Silva, 2008 (M=7)" NGA" 0.35" 0.42"

Akkar and Bommer, 
2010" Europe" 0.23" 0.28"

Boore and Atkinson, 
2008" NGA" 0.26" 0.31"

Campbell and 
Bozorgnia, 2008" NGA" 0.22" 0.26"

Chiou and Youngs, 
2008 (M=5)" NGA" 0.34" 0.41"

Chiou and Youngs, 
2008 (M=6)" NGA" 0.30" 0.36"

Chiou and Youngs, 
2008 (M=7)" NGA" 0.26" 0.31"

Zhao et al., 2006" Japan" 0.40" 0.48"

Cotton, Archuleta, Causse, SRL 2012"



Comparing Variability from Source Studies and Inferred from GMPE’s 

ECSG: Earthquake Source Physics on Various Scales 

Source Studies"
Stress Drop Variability"

(Log10)"

GMPE Inferred "
Stress Drop Variability 

(Log 10) "

3.85" 1.36"

3.36" 1.15"

3.18" 0.99"

3.18" 0.97"

4.21" 0.64"

3.29" 0.71"

3.50" 0.60"

1.31" 0.94"

1.61" 0.83"

0.71"

1.11"

Cotton, Archuleta, Causse, SRL 2012"

Generally a factor ~3-4 

N
o one-to-one com

parison 



Sigma: Its Effect on Ground Motion 
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Chiou & Youngs 2008
Abrahamson & Silva 2006
Rodriguez-Marek et al. 2012
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Error in Corner Frequency Drives Variability in Stress Drop 
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Effect of Attenuation 
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Stress Drop Based on Root-Mean-Square Acceleration 

ECSG: Earthquake Source Physics on Various Scales Hanks, 1979 JGR; McGuire and Hanks, 1980 BSSA 



Map of Tottori Earthquake 
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Root-Mean-Square Acceleration 
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Tottori: Stress Drop Distribution 

ECSG: Earthquake Source Physics on Various Scales Crempien and Archuleta, SCEC 2012 
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Summary 

ECSG: Earthquake Source Physics on Various Scales 

•  The real variability in stress drop is less than that found using the standard 
Brune  analysis of the seismic spectrum, i.e., corner frequency and spectral 
level at “0” frequency. 

•  Variability of the stress drop is real. There is a regional dependence of the 
mean and could be in the variability. 

•  In theory, using root-mean-square acceleration should provide a more reliable 
estimate of the variability in stress drop.  

•  Attenuation (path and site) plays a significant role in both the standard Brune 
analysis as well as analysis of the root-mean-square spectrum.  
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Variability of Stress Drop Derived from Variability of GMPE 

ECSG: Earthquake Source Physics on Various Scales 
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