Incorporating Earthquake Source Physics into Ground Motion Models for Seismic Hazard Studies

Norm Abrahamson

Pacific Gas & Electric Company

Oct 4, 2012

Approaches for Ground Motion Models

- Empirical models
- Point-Source simulations
- Finite-Fault Numerical simulations

Difficulties with Empirical Ground Motion Data

Data sets still sparse in the key magnitude and distance ranges

Difficulties with Empirical Ground Motion Data

- Bad properties of data sets
 - Uneven sampling of earthquakes
 - 1 to >200 recordings per event
 - Censoring of data
 - Smaller ground motions not sampled (triggering issue)
 - Limited bandwidth (long period) in older data
 - Correlation of independent parameters
 - Magnitude distance
 - Rupture depth and focal mechanism
 - Site condition (VS30) and depth to rock
 - Correlation of dependent parameters
 - Correlation through Event term
 - Correlation through Site term

Finite-Fault Simulations (FFS)

- Physics-based
 - Accounts for site-fault specific geometries and complex crustal structure
 - No need for simplified distance metric
 - Can sample large suite of earthquakes, not just those with strong motion data
 - Define the median and variability of sources for future large magnitude earthquakes
 - Global
 - Regional
 - Fault specific
 - Avoids data sampling issues in empirical data

Uses of FFS in Seismic Hazard Studies

- Median and variability
 - FFS completely replace the empirical GMPEs (cyberShake type approach)
- Median
 - FFS replace the median, but use the empirical results for the variability
- Scaling (NGA approach)
 - Only relative differences in medians used
 - Constrain scaling in ranges not well constrained by the empirical data
 - Scaling from M7 to M8
 - Scaling to short distances
 - Scaling to long periods (from T=5 to T=20 sec)
 - Hanging wall effects
 - Directivity effects

Needs for Use of Finite-Fault Simulations in Seismic Hazard Studies

- Verification
 - Simulations are working as intended (computer program)
- Calibration/Validation
 - Optimize methods (if large enough data set used)
 - Quantitative evaluation of the accuracy of the simulation method for the optimized methods
- Robustness
 - Similar results using different simulation methods
- Transparency
 - Someone other than the author can run the simulations
- Reproducible Results
 - Fixed versions of simulation software that are readily available

Robustness

- More than one FFS method that lead to similar ground motions
 - We don't want to suppress real epistemic uncertainty
 - Need similar results for scenarios well constrained by empirical data
- Cannot rely on a single model
 - Each developer of a simulation method claims his method is correct

Transparency

- FFS computer program is publically accessible
- Validation conducted by someone other than the author of the code

Reproducible

- Forward modeling results can be reproduced by a second group
- Needs stable versions of codes

Finite-Fault Simulations

- Distribution of source parameters for future earthquakes
 - Source physics
- Wave propagation for a given source
 - Ground motions at given sites
- Past attempts at validation
 - Focused on comparing the ground motions from simulations to past earthquakes
 - Have not done a good job on the source parameters of future earthquakes

Past Attempts Using FFS

- Several project over last 20 years to compare results of Kinematic FFS
- Validation
 - Methods validated against ground motions from past earthquakes (small number of eqk)
 - Methods considered to give an acceptable fit to past ground motions
- Forward application of models
 - Define a test case: magnitude, rupture geometry, crustal model, and site locations
 - Each methods generate source parameters for a multiple realizations of the source
 - Compare median predictions
 - Compare variability

Past Attempts Using FFS (cont)

- Results: Inconsistent median results from different methods
 - Most likely due to differences in the generation of source properties for future earthquakes
 - Different methods used for the source from past earthquakes (e.g. inversions from other studies) and for the forward application
 - Are the source distributions for future earthquakes mean centered?
 - Need to consider the joint distributions of source parameters
 - Earthquake source physics
- Results: Variability not well constrained
 - Much larger or much smaller than empirical variability depending on the method and frequency band

SS Scenarios: 2004 NGA FFS Project

Event Name	Mag	Area (km^2)	W (km)	L (km)	Dip	Top of Rupture (km)
SA	6.5	325	13	25	90	0
SB	6.5	480	15	32	90	0
SC	6.5	210	10	21	90	0
SD	7.0	1005	15	67	90	0
SE	7.5	3150	15	210	90	0
SF	7.5	4800	15	320	90	0
SG	7.5	2100	15	140	90	0
SH	7.8	6300	15	420	90	0
SI	7.8	3525	15	235	90	0
SJ	8.2	7050	15	470	90	0

Scenario SA: M6.5, SS (T=0.2 sec)

Scenario SA: M6.5, SS (T=1 sec)

Scenario SA: M6.5, SS (T=3 sec)

Empirical Data for HW

M7.0, Dip=45, ZTOR=0

SCEC Broadband Platform Validation Project

- Cooperative study
 - Southern California Earthquake Center
 - Pacific Gas & Electric
 - Southern California Edison
 - Pacific Earthquake Engineering Center (NGA-east)
- Ground motion parameters of interest
 - Elastic response spectral values at 5% damping over the frequency band of 0.1-100 Hz
 - SCEC is also conducting a more extensive validation that considers many additional parameters of ground motion
 - Focus is on the median, not aleatory variability
 - Will use empirical aleatory variability models
 - In future, need to expand scope to address the variability

Needs

- Evaluation of the finite-fault simulation (FFS) methods using 1-D crustal models
 - Are they ready for engineering applications or is more research needed?
- Consider a suite of representative FFS methods for evaluation
 - Add additional modules to capture the range of candidate methods
- SCEC evaluation of the FFS methods on the Broadband platform
 - Identify the frequency and distance ranges for which the FFS methods are applicable
 - Completion date: April 2013

SCEC Validation

- Part A: Comparison with past Earthquakes
 - 20 active crustal region earthquakes
 - 3 EUS earthquakes
 - Data corrected to rock site conditions
 - Large enough data set to allow for calibration
- Part B: Comparison with Empirical GMPEs
 - 2 scenarios (M6.5 at R15-40 km; M7.0 at R15-40 km)
 - Compare median ground motions
 - Goal is to calibrate the source rupture generators
 - Rock site conditions

Proposed Active Crustal Eqk for Validation

From GMSV workshop	Additional Eqk from NGA-west2		
2010 El Mayor-Cucapah, M=7.2 (EQID 280)	1999 Kocaeli, Turkey, M=7.5 (EQID 136)		
1994 Northridge-01, M=6.7 (EQID 127)	1999 Chi-Chi, Taiwan, M=7.6 (EQID 137)		
1999 Hector Mine, M=7.1 (EQID 158)	2000 Tottori, Japan, M=6.6 (EQID 176)		
1992 Landers, M=7.3 (EQID 125)	2007 Chuetsu-Oki, Japan, M6.7 (EQID 278)		
1987 Whittier, M=6.0 (EQID 113)	2004 Niigata, Japan, M=6.6 (EQID 180)		
1992 Big Bear-01, M=6.5 (EQID 126)	2008 Iwate, Japan, M=6.9 (EQID 279)		
2004 Parkfield, M=6.0 (EQID 179)	2009 L'Aquila, Italy, M6.3 (EQID 274)		
1989 Loma Prieta, M=6.9 (EQID 118)	2010 Darfield, NZ, M=7.0 (EQID 281)		
1984 Morgan Hill, M=6.2 (EQID 90)	2003 San Simeon, M6.5 (EQID 177)		
1986 N. Palm Springs, M=6.1 (EQID 101)			
1983 Coalinga, M=6.5 (EQID 76)			

Consistency: Parts A and B

- Past studies have recurring inconsistency
 - Source model used in the validation (part A)
 - Method used to generate sources for future earthquakes
- Proposed approach for SCEC validation (part A)
 - Fix rupture geometry and hypocenter location for past earthquakes
 - Use the rupture generator to produce a suite (~50) of source models for the past earthquake
 - Generate ground motions at recording sites for each source model
 - Select the source model that leads to ground motions that best matches the observed ground motions

Validation for Aleatory Variability

- Source variability
 - From suite of source models for a future earthquake with a given geometry
 - "Parametric aleatory variability"
 - Source physics part
- Wave propagation variability
 - From misfit between simulated ground motions (for optimized source) and the recorded ground motions
 - "modeling aleatory variability" (related to limitation of FFS method and knowledge of crustal structure)
 - Needs to be added to the FFS variability

Aleatory Variability for Source

- How is this calibrated/validated?
- Empirical GMPEs
 - Use variability of event terms estimated from strong motion data (between-event variability)
 - Limited number of large magnitude events to use
- FFS
 - What data are available?
 - Teleseismic data to expand numbers of events beyond those events with strong ground motions?
 - Source inversion libraries?
 - Is there enough data to constrain the source variability using earthquake source physics?

Summary

- Physics-based finite-fault simulations (FFS) are clearly the future of ground motion modeling
- Finite-Fault simulations will stay as a research topic unless the key topics are adequately addressed
 - Verification
 - Calibration/Validation
 - Robustness
 - Transparency
 - Reproducibility
- Key outstanding issue limiting use of FFS in hazard studies is the distribution of source parameters for future earthquakes
 - Distribution must be mean centered
 - Variability must be validated
- SCEC broadband platform and the validation study provides a standard data set and approach to these last four topics for the median ground motion
- Validation of the variability of FFS needs to be addressed if FFS is to fully replace the empirical GMPEs