

Subash Ghimire Philippe Guéguen

Evaluation of Machine Learning Models for Average Annual Losses Assessment

Comparison with ESRM20 Results in France

ISTerre @ Université de Grenoble Alpes philippe.gueguen@univ-grenoble-alpes.fr

Seismic Exposure and Vulnerability Models

Scientific issues

Exposure model - How to quantify the physical exposure model (buildings) and their vulnerability ?

Capacity/damage scale - How to assess the degree of damage based on building types, construction designs, location …?

Host-to-target adjustment of fragility function?

Machine learning in seismic risk models Vulnerability-based methodology

Predictive analytics: use Machine Learning to predict vulnerability function based on available metadata (features) and spatial patterns

Machine learning in seismic risk models Vulnerability-based methodology - Riedel, Guéguen et al., 2017

Support Vector Machine (SVM)

Supervised learning models with associated learning algorithms that ANALYSE data and RECOGNIZE patterns, used for CLASSIFICATION.

\mathbf{r} and indicates and indicates in the shapes, and in proved slightly to 63.5 \mathbf{r} of the roof is indirectly related to construction material. Accuracy is not enhanced dras-Machine learning in seismic risk models two attributes. In other words, the added information is not completely independent Vulnerability-based methodology - Riedel, Guéguen et al., 2017 are independent and therefore add no new information for the classifier to work with. Out

(Gueguén et al., 2007)

Confusion matrix : Construction period - Num of floors

Machine learning in seismic risk models Vulnerability-based methodology - Riedel, Guéguen et al., 2017

Ubaye earthquake (M 4.9 - 2014)

Observed: **272** damaged buildings (macroseismic field) Predicted: **255 +/- 33** D1/D2/D3 buildings

Machine learning in seismic risk models Damage-based methodology

Predictive analytics: use Machine Learning to predict damage function based on available metadata (features) and spatial patterns

Machine learning in seismic risk models Damage-based methodology

Post-earthquake macroseismic surveys

Machine learning in seismic risk models Damage-based methodology - **Ghimire et al.**, Earthq. Spec. 2022; NHESS2023

DaDO Italian earthquakes **Methods**

Training/Testing $= 60\%/40\%$

Six methods tested (3 classification, 3 regression) random forest, gradient boosting, extreme gradient boosting

Classification models performed slightly better

The most efficient methods: Extreme gradient boosting classification (XGBC) (Chen and Guestrin, 2016).

Imbalance issue

Four methods tested Random undersampling, random oversampling, synthetic minority oversampling technique (SMOTE) and SMOTE-ENN.

Random oversampling method by rectifying the skewed distribution of the target features (DGs).

Features

Weight of the most important building feature evolves according to DG.

Accuracy score (for TLS damage classification) Basic-features setting : 0.68 Full-features setting : 0.72

Machine learning in seismic risk models Damage-based methodology - **Ghimire et al.**, Nat. Haz. 2024

Training/Testing = 60%/40% - **Features** = MSI, Nb of floor, Building age

Given-earthquake **Aggregated-earthquake ALL: Nepal + Haiti + Serbia + Italy** 100 1.92 20.41 63.65 12.44 **ALL** 1.58 90 2.65 20.58 69.83 6.56 Nepal 0.38 80 24.14 Haiti 0.74 48.29 23.58 3.26 70 Serbia 0.26 6.28 81.41 8.72 3.33 60 0.81 10.81 66.69 17.72 3.97 Italy:E1 $\frac{1}{8}$ ltaly:E2
 $\frac{1}{8}$ ltaly:E2 0.19 6.73 67.32 21.5 4.26 50 Italy:E3 0.82 5.63 73.56 15.76 4.22 40 $\mathbf{0}$ Italy:E4 $\mathbf{0}$ 84.38 10.42 5.21 30 Italy:E5 0.45 2.75 77.02 15.05 4.72 20 Italy:E6 1.39 7.78 61.45 22.19 7.19 10 Italy:E7 0.17 4.24 74.53 19.02 2.04 Ω -2 -1 $\mathbf 0$ $\overline{1}$ $\overline{2}$ Δ = Obs. - Pred.

Accuracy score in other similar studies:

Mangalatheu et al. (2020): **66%** Roslin et al. (2020): **67%** Harirchian et al. (2021): **65%** Ghimire et al. (2022): **68%**

Machine learning in seismic risk models Damage-based methodology - **Ghimire et al.**, Nat. Haz. 2024

Percentage

Model effectiveness : Host-to-Target adjustment

Training/Testing = Host:100%/Target:100%

Testing ESRM20 with ML-based methods For France

Exposure models for France ESRM20, INSEE (National Census), MAJIC2 (French Cadastral Information)

Testing ESRM20 with ML-based methods For France

Testing ESRM20 with ML-based methods For France

Summary

- Current models rely on engineering-based data and scenario simulations, but they are often limited by data availability, uncertainty, and computational complexity.

- Machine learning offers significant potential for improving the accuracy, scalability, and real-time capabilities seismic risk assessment, leading to more informed decisions for disaster preparedness and response.

- The future of seismic loss assessment lies in the integration of machine learning with traditional methods to create more dynamic, data-driven, and actionable models.

Opportunities

- Real-time, data-driven decision-making for risk reduction and emergency response.
- Test more accurate, adaptable vulnerability models using big data.

Challenges

- Data availability: The quality and granularity of exposure, and vulnerability data can limit model accuracy.
- Interpretability: Machine learning models often lack transparency, which is a challenge for regulatory use and policymaking.

- Integration: How to integrate machine learning models with existing risk assessment frameworks and decision-making processes.

Subash Ghimire Philippe Guéguen

Evaluation of Machine Learning Models for Average Annual Losses Assessment

THANK YOU

Open the floor for questions and discussion

ISTerre @ Université de Grenoble Alpes philippe.gueguen@univ-grenoble-alpes.fr