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Scientific issues

Exposure model - How to quantify the physical exposure model
(ouildings) and their vulnerabllity ?

Capacity/damage scale - How to assess the degree of damage based on
building types, construction designs, location ...?

Host-to-target adjustment of fragility function?



Machine learning in seismic risk models
Vulnerability-based methodology
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Predictive analytics: use Machine Learning to predict vulnerability
function based on available metadata (features) and spatial patterns



Machine learning in seismic risk models
Vulnerability-based methodology - Riedel, Guéguen et al., 2017

Support Vector Machine (SVM)

Supervised learning models with associated learning algorithms that ANALYSE data and RECOGNIZE patterns,
used for CLASSIFICATION.
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Binary and Linear Classification
Minimize (in w, b) ||w|| ; subjected to (for any i =1...n) y1 (w.xi —b) >=
1




Machine learning in seismic risk models
Vulnerability-based methodology - Riedel, Guéguen et al., 2017

(a) (b)
Experts (5000 buildings - Construction period - Construction period
- P ( 9 ) /N - N° of floors /N - N° of floors P
I Inhabitants 600 |- 600 |- - Roof shape
Buildings 500 - 500 -
T .. 400 Median: 62.4% .. 400 Median: 63.5%
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A 131 121 37 0 0 0 58 60 62 64 66 68 70 72 74 76 82 84 86 88 90 92 94 96 98 100
Overall Accuracy [%] Overall Accuracy [%]
B 111 941 78 21 0 0
C 29 86 571 395 43 0
D 9 7 107 249 193 0
E 0 0 8 32 331 0
F 0 0 0 0 0 0
280 1155 801 697 567 0 3500

Acc.  0.629



Machine learning in seismic risk models
Vulnerabllity-based methodology - Riedel, Guéguen et al., 2017

Scenario-based testing

Ubaye earthquake (M 4.9 - 2014)

Observed: 272 damaged buildings (macroseismic field)

Predicted: 255 +/- 33 D1/D2/D3 buildings
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Intensity-lbased application

Estimated direct loss for regulatory accelerations [%]
(Return Period 475 years)
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STRASBOURG
mean loss: 5.7 %

NANTES

GRENOBLE
mean loss: 5.8 %

mean loss: 12.3 %

LOURDES
mean loss: 14.8 %

NICE
mean loss: 13.3 %
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Mean Direct Loss Percentage of buildings (for damage Di)
(% of total building stock value) (with damage Di)

Loss Ratio



Machine learning in seismic risk models
Damage-based methodology
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Predictive analytics: use Machine Learning to predict damage
function based on available metadata (features) and spatial patterns



Machine learning in seismic risk models
Damage-based methodology

Post-earthguake macroseismic surveys

DaDO Italian data

/ earthquakes M5.3-M6.9

103,940 buildings
(Dolce et al., 2019)
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42.1 7%@2’3.’62%
34.21%
M7.0, 2010 Haiti earthquake

353,534 buildings
(MTPTC, 2010)

8.15%

22.25% (Stojadinovic et al., 2021)
9.6% 83.63%

Q

M5.4,2010 Serbia earthquake

10.06% .. 1,949 buildings

M7.8, 2015 Nepal earthquake (M5.4)

757,362 buildings
(NPC, 2015)

Hazard:
Macroseismic intensity (MSI)

ShakeMaps

a USGS

a changing world

Damage scale:

EMS98 - DG0-DG5

Traffic Light classification -
DGO0+DG1, DG4+DG5
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Machine learning in seismic risk models
Damage-based methodology - Ghimire et al., Earthg. Spec. 2022; NHESS2023

- Methods
DaDO ltalian earthquakes Six methods tested (3 classification, 3 regression)
Training/Testing = 60%/40% random forest, gradient boosting, extreme gradient boosting

Classification models performed slightly better

(a) Importance of features The most efficient methods: Extreme gradient
S ——. boosting classification (XGBC) (Chen and Guestrin,
2016).
11) Materials: poor quality masonry I m balance issue
15 Mtetl oot sty mived e sy Four methods tested
}451; ﬁZIZEZi rg;ffflo?z:g?oﬁ:f;: 2222 masonry Rgndgm undersampling, ranplom oversampling, synthetic
16) Material: reinforced concrete wall minority oversampling technique (SMOTE) and SMOTE-ENN.

17) Material: steel frame
0) Lat 18) Material: others

mmm Dlone o Reearty: inegular Random oversampling method by rectifying the
2) Number of storeys cgularity: regular . . .
3) Age " 21)Rooftype: heavy no thrust skewed distribution of the target features (DGs).
4) Floor area 22) Roof type: heavy thrust B DG5S
5) Height 23) Roof type: light thrust
6) MSI 24) Roof type: light no thrust Bl DG4
7) Position: corner 25) Groundslope:cres DG3 Features
osition: extreme ound slope: flat . . .
o) Dot oot 27) Ground slope: moderate mm DG2 Weight of the most important building feature
10) Position: isolated 28) Ground slope: steep B DG1 eVO|VeS aCCOFdin g tO DG
B DGO
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Accuracy score (for TLS damage classification)
mean (|SHAP value|) (average impact on model output magnitude) Basic-features setting - 0.68

Full-features setting : 0.72



Error (%)

Machine learning in seismic risk models
Damage-based methodology - Ghimire et al., Nat. Haz. 2024

Training/Testing = 60%/40% -

Features = MSI, Nb of floor, Building age
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Accuracy score in other similar studies:
Mangalatheu et al. (2020): 66 %
Roslin et al. (2020): 67 %
Harirchian et al. (2021): 65 %
Ghimire et al. (2022): 68 %
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Machine learning in seismic risk models
Damage-based methodology - Ghimire et al., Nat. Haz. 2024

Model effectiveness : Host-to-Target adjustment
Training/Testing = Host:100%/Target: 100%

o  Gross Domestic Product ratio
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Testing

For France

—SRM20 with ML-based methods

Exposure models for France
ESRM20, INSEE (National Census), MAJICZ (French Cadastral Information )

(a)

Number of buildings (million)

(d)

Replacement cost (billion)
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Testing

=S

RM20 with ML-based methods

For France
Feature extraction and Machine learning
generation algorithms
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Exposure _ Damage :
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ESHM20 MAJIC, INSEE XBGC from DaDO Italian dataset ESRM20

Building classification (feature for ML): Number of floors, Age, MSI

DG1-DG5 damage classification

1
AAL = TZ(O*NDGl +0.05% Npge + 0.15%« Npgs + 0.6 x Npag + 1.0 % Npgs)
BC

TLS damage classification

1
AAL = ; (0 % Ngreen + 0.1 % Norange + 0.8 ¥ Ngea)

Damage-to-loss ratio from ESRM20 ( Crowley et al., 2021)



Testing

SRM20 with ML-based methods

For France
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Summary

- Current models rely on engineering-based data and scenario simulations, but they are often limited by data
availability, uncertainty, and computational complexity.

- Machine learning offers significant potential for improving the accuracy, scalability, and real-time capabilities
seismic risk assessment, leading to more informed decisions for disaster preparedness and response.

- The future of seismic loss assessment lies in the integration of machine learning with traditional methods to
create more dynamic, data-driven, and actionable models.

Opportunities

- Real-time, data-driven decision-making for risk reduction and emergency response.
- Test more accurate, adaptable vulnerability models using big data.

Challenges

- Data availability: The quality and granularity of exposure, and vulnerability data can limit model accuracy.

- Interpretability: Machine learning models often lack transparency, which is a challenge for regulatory use and policy-
making.

- Integration: How to integrate machine learning models with existing risk assessment frameworks and decision-making
processes.
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