Earthquakes in low strain regions: Challenges and Opportunities An example from West Iberia

Back to Seismic Sources...

Tectonic Setting

Serpelloni et al, 2007

Do we need to worry about earthquakes in low strain rate regions?

Tectonic Setting

Serpelloni et al, 2007

Custodio et al, 2016

Custodio et al, 2016

Challenges

Seismicity:

- Few earthquakes
- Sparse networks

Geological record:

- Sedimentation
- Erosion
- Human activities

Instrumental seismicity

Clusters and Lineations

Do you interpret these? 😕

Cluster/ lineation	Location	Orientation	Number of earthquakes	Percentage of earthquakes	Observations
A	Porto-Tomar fault	N–S	107	0.73 per cent	Clear lineation
В	Seia-Lousã and Vilariça faults	NNE–SSW, NE–SW	66	0.45 per cent	Clear lineation
С	Montejunto-Aires-Candeeiros range	NNE-SSW	268	1.84 per cent	Diffuse (2?)
D	Arraiolos	WNW-ESE	334	2.29 per cent	Clear lineation
Е	Viana do Alentejo	No orientation	240	1.64 per cent	Very diffuse
F	_	No orientation	111	0.76 per cent	Very diffuse
G	_	NNE-SSW	64	0.44 per cent	Clear lineation
Н	Monchique	NNE-SSW, E-W	1804	12.36 per cent	Clear, 2 lineations
Ι	_	No orientation	140	0.96 per cent	Very diffuse
J	Gorringe	NNE-SSW	598	4.10 per cent	Clear, diffuse cluster
Κ	Horseshoe Abyssal Plain	WNW-ESE	320	2.19 per cent	Clear, diffuse lineation (2?)
L	_	NNE-SSW	1066	7.31 per cent	Clear, diffuse cluster
М	_	WNW-ESE	126	0.86 per cent	Clear, diffuse cluster
Ν	_	WNW-ESE	498	3.41 per cent	Clear, diffuse cluster
0	_	NNE-SSW '	235	1.61 per cent	Clear lination
Р	Guadalquivir/Cadiz	NE-SW	1480	10.14 per cent	Clear, diffuse cluster (2?)
All		-	7457	51.11 per cent	=

Arraiolos

Matos et al, 2018

2. Monchique

Cluster/ lineation	Location	Orientation	Number of earthquakes	Percentage of earthquakes	Observations
A	Porto-Tomar fault	N–S	107	0.73 per cent	Clear lineation
В	Seia-Lousã and Vilariça faults	NNE–SSW, NE–SW	66	0.45 per cent	Clear lineation
С	Montejunto-Aires-Candeeiros range	NNE-SSW	268	1.84 per cent	Diffuse (2?)
D	Arraiolos	WNW-ESE	334	2.29 per cent	Clear lineation
Е	Viana do Alentejo	No orientation	240	1.64 per cent	Very diffuse
F	_	No orientation	111	0.76 per cent	Very diffuse
G		NNE SSW	64	0.44 per cont	Clear lineation
Н	Monchique	NNE-SSW, E-W	1804	12.36 per cent	Clear, 2 lineations
I	-	No orientation	140	0.96 per cont	Vory diffuse
J	Gorringe	NNE-SSW	598	4.10 per cent	Clear, diffuse cluster
Κ	Horseshoe Abyssal Plain	WNW-ESE	320	2.19 per cent	Clear, diffuse lineation (2?)
L	_	NNE-SSW	1066	7.31 per cent	Clear, diffuse cluster
М	-	WNW-ESE	126	0.86 per cent	Clear, diffuse cluster
N	-	WNW-ESE	498	3.41 per cent	Clear, diffuse cluster
0	-	NNE-SSW	235	1.61 per cent	Clear lination
Р	Guadalquivir/Cadiz	NE-SW	1480	10.14 per cent	Clear, diffuse cluster (2?)
All	_	-	7457	51.11 per cent	_

Custodio et al, 2015

Monchique

Geology

Hydrothermalism

Neres et al, 2024

Magnetic Anomaly Modeling

Neres et al, 2024

Seismicity

ML catalogs & New location algorithms

The 1969 M7.8 St Vincent earthquake (z=40 km)

The 1755 M8.5(?) Lisbon earthquake

Fonseca, 2005

Submarine Cables

DAS, Madeira, M2.9

Upcoming (operations due 2027): SMART cables

Improvement in earthquake location (error ellipses)

Concluding Remarks

- There are still some very basic gaps in our knowledge of seismic sources...
- Seismology is at a turning point in observational capability. It's an exciting time for Seismology!
 - How do we integrate information from small earthquakes in hazard?
- Integration of datasets is key; better if physis based.
 - GNSS and seismic data are very complementary (more on GNSS in the next talk); also in the context of RT and EEW.
 - Need to develop algorithms for data integration.

https://iaga-iaspei-2025.org

IAGA / IASPEI Joint Scientific Meeting 2025

Abstract submission: 12/Mar/25 S05 Frontiers in Fiber-Optics : S11 Disaster risk reduction fo S12 Toward the next generati S15 Earthquakes in low strain

Ì

JOIN THE

Funded Fundação para a Ciência e a Tecnologia, I.P./MCTES through national funds (PIDDAC).

This work was funded by the Portuguese FCT – Fundação para a Ciência e a Tecnologia, I.P., within the scope of project PTDC/CTA-GEF/6674/2020 (http://doi.org/10.54499/PTDC/CTA-GEF/6674/2020).