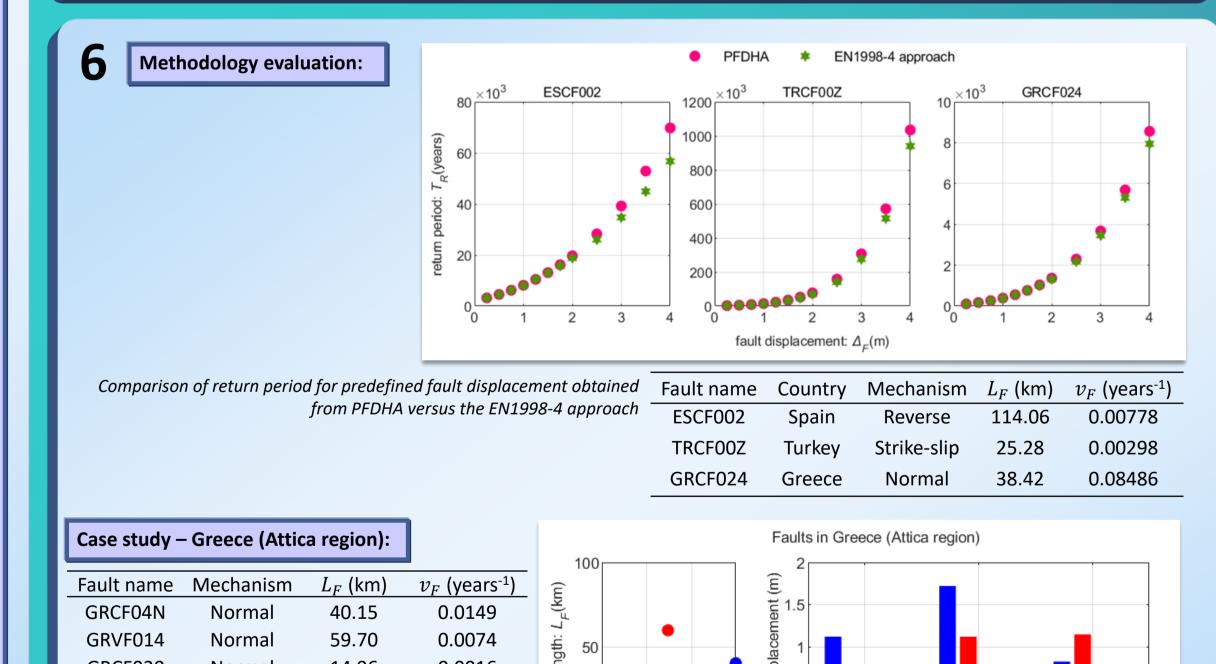
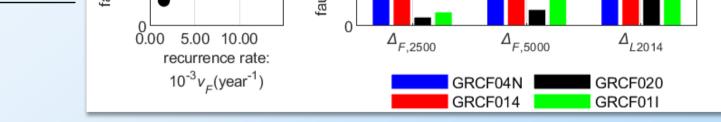


• 1st step. The fault mechanism, the fault length, and the crossing point are determined for the lifeline-fault crossing at hand.




- 2nd step. The productivity of the fault is derived either from an available source model, defined by a specialized seismological study, or estimated via a proposed approximation.
- Fault productivity \rightarrow recurrence rate (v_F) \rightarrow average annual number of events above a minimum earthquake magnitude of engineering significance
- *3rd step*. The return period (T_R) of exceeding a selected fault displacement (Δ_F) or vice versa is estimated via a single expression:

$$T_R(\Delta_F) = \frac{1}{C_F v_F f_L(\Delta_F, L_F, X_L)}$$

where C_F is the confidence factor depending on the method used to determine the recurrence rate v_F and $f_L(\Delta_F, L_F, X_L)$ depends on the fault mechanism, fault length, and crossing point and is estimated for the selected fault displacement.

Δ_F (m)	coeff.	Recurrence rate class		Δ_F	agaff	Recurrence rate class		
		low	high	(m)	coeff.	low	high	
0.25	a_1	-5.1391	-9.3774	1.00	a_1	-13.5015	-11.8186	Indicative part of tables provided to calculate function $f_L(\Delta_F, L_F, X_L)$
	<i>a</i> ₂	2.2983	3.9922		<i>a</i> ₂	6.7661	4.2274	
	a_3	-0.9885	11.1942		a_3	-0.7515	9.7195	
	a_4	-0.6845	-0.8118		a_4	-1.6635	-0.8127	
	a_5	2.4665	-1.9394		a_5	2.3699	-1.2698	
	a_6	-2.4378	-9.3626		a_6	-0.7217	-8.0084	
	a ₇	0.0536	0.0495		a ₇	0.1265	0.0491	
	a ₈	-0.2615	0.1078		a_8	-0.2027	0.0839	
	a9	-0.5319	1.0160		<i>a</i> 9	-1.1461	0.4657	

Fault displacements obtained from the EN1998-4 approach for return periods of 2500 years ($\Delta_{F,2500}$) and 5000 years ($\Delta_{F,5000}$), compared against the "seismicity-agnostic" estimate ($\Delta_{F,L2014}$) from Leonard (2014) empirical fault scaling relations

0.0016

0.0030

14.96

32.04

Normal

Normal

Publications

GRCF020

GRCF01I

Melissianos, V. E., Vamvatsikos, D., Danciu, L., and Basili, R. (2024). Design Fault Displacement for Lifelines at Fault Crossings: The Code-Based Approach for Europe. Bulletin of Earthquake Engineering, 22:2677-2720. https://doi.org/10.1007/s10518-023-01813-9

Melissianos, V. E., Danciu, L., Vamvatsikos, D., and Basili, R. (2023). Fault Displacement Hazard Estimation at Lifeline-Fault Crossings: A Simplified Approach for Engineering Applications. Bulletin of *Earthquake Engineering*, 21:4821-4849. https://doi.org/10.1007/s10518-023-01710-1

Melissianos, V. E., Vamvatsikos, D., and Gantes, C. J. (2017). Performance Assessment of Buried Pipelines at Fault Crossings. Earthquake Spectra, 33(1):201-218. http://dx.doi.org/10.1193/122015EQS187M

Contact info: Vasileios E. Melissianos: melissia@mail.ntua.gr | Dimitrios Vamvatsikos: divamva@mail.ntua.gr | Laurentiu Danciu: laurentiu.danciu@sed.ethz.ch | Roberto Basili: roberto.basili@ingv.it Funded by:

HORIZON 2020 "SERA - Seismology and Earthquake Engineering Research Infrastructure Alliance in Europe (Grant Agreement No. 730900)

HORIZON 2020 "METIS-Seismic Risk Assessment for Nuclear Safety" (Grant Agreement No. 945121)

Hellenic Foundation for Research and Innovation (H.F.R.I.) "TwinCity - Climate-Aware Risk and Resilience Assessment of Urban Areas under Multiple Environmental Stressors via Multi-Tiered Digital City Twinning" (Number: 2515)