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An efficient way of interpreting a seismic profile cross-section is a joint interpretation of velocity models
of different types of seismic waves. This study performs tomographic inversion of surface wave travel
times observed during the seismic profile carried out in Namibia in the framework of the SIMBA project.
The thus obtained surface wave velocity model is used to complement the previously computed P- and
S-wave models. Profile sections characterised by similar seismic velocities are identified as lithological
classes and remapped in model space. Two methods are used to identify such classes: a manual identi-
fication of high probability zones in a probability density function, and an automatic neural network
approach. The results of these two methods are consistent with each other. The availability of the surface
wave velocity model as additional independent physical parameter increases the correlation between the
remapped lithological classes and the geological map, leading to the conclusion that the identified classes
correspond to real geological formations.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The SIMBA (Seismic Investigations of the Messum and Brandberg
Areas) experiment was carried out in the framework of a larger
project aimed at understanding magmatic processes related to
the break-up of Western Godwana (e.g., Trumbull et al., 2000; Bauer
et al., 2000). The seismic profile started near Cape Cross, and ex-
tended north-east for 75 km (Fig. 1). A rolling spread of 180 receiv-
ers was used at a total of 728 receiver locations, while 125
explosions fired from 9 m boreholes were used as sources. More
detailed information regarding the experiment is given by Bauer
et al. (2003). The main target area of the profile was the Messum
intrusive complex – one of several subvolcanic ring complexes in
Namibia formed just prior to the onset of seafloor spreading (Ewart
et al., 1998). Surrounding the complex are the metasediments and
granites of the Pan-African Damara Belt, often covered by sand-
stone, mudstone, and basalt flows (Milner, 1997).

Bauer et al. (2003) identified first arrivals of refracted P- and
S-waves, and performed tomographic inversion on the two inde-
pendent sets of travel times. The fact that these models were cal-
culated independently of each other makes it possible to analyse
the spatial distribution of the velocities, as well as of the Poisson’s
ratio, r. Such an analysis targets the mapping of different litholog-
ical classes beneath the profile. In this study we identify surface
waves in the recorded data, and use tomographic inversion to com-
ll rights reserved.
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icz).
pute surface wave velocity models. While an analysis of P-wave
velocity and Poisson’s ratio has been done previously (Bauer
et al., 2003), the accuracy in identifying lithological classes, and
matching them to real geological formations, is increased by add-
ing surface wave velocity as an additional independent parameter.

2. Surface wave tomography

As well as direct P- and S-waves, surface wave arrivals can be
seen on a number of recorded traces (Fig. 2). As these arrivals are
most prominent on the vertical components of the recordings,
we interpret them as Rayleigh waves. Attempts to correlate varia-
tions in surface wave velocity with real geographical and geologi-
cal features have been carried out for nearly half a century (e.g.,
Sato and Santo, 1969; Kausel et al., 1974). The surface wave veloc-
ities depend on similar factors to those influencing the S-wave
velocity (most importantly the density of the medium), and with
certain assumptions the S-wave velocity can be derived from the
surface waves (Aki and Richards, 1980). These assumptions include
a layered structure, or constant Poisson’s ratio. Under particularly
strict assumptions a linear relationship between the two can be
assumed, approximating the surface wave velocity as 92% of the
S-wave value (Xia et al., 1999). However, deviations from such
relationships frequently occur; for example, surface waves are very
sensitive to the medium’s rigidity (e.g., Doyle, 1995). Such varia-
tions are likely to correspond to real geological features, which
can be identified by incorporating surface wave velocities in the
classification scheme.
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Fig. 1. Location of the SIMBA near-vertical seismic profile. The 125 shots are marked as black circles on the geological map of the region (simplified after Milner (1997)). The
profile starts in the south-west near Cape Cross (km 0 in all further figures), crosses the Messum Igneous Complex, but for logistical reasons had to be stopped at km 73, just
short of the bigger Brandberg Complex.

Fig. 2. Example of the raw signal recorded during a single shot. Traces were time-reduced by 6 km/s – thus the P-wave arrivals (marked with an ellipse) appear parallel to the
x-axis. Slower arrivals of S-waves and surface waves (sur) also indicated with ellipses.
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The velocity of surface waves is frequency dependent. Different
frequencies f also sample different depths d (e.g., Ritzwoller and
Levshin, 1998), with an approximate relationship being

d ½m� � 1000 m=s
f ½Hz� ð1Þ

To explore this dependence of frequency, different sets of picks
were made after the traces were subjected to different narrow
band pass Ormsby filters. Six centre frequencies were used:
15 Hz, 10 Hz, 7 Hz, 5 Hz, 3.33 Hz and 2.5 Hz. Both higher and lower
frequencies than ones listed here were also examined, but no sig-
nificant surface wave arrivals could be detected. Using Eq. (1)
above we can estimate that while the 15 Hz waves penetrate only
the uppermost �60–70 m, the 2.5 Hz signal samples up to a depth
of �400 m.

For each centre frequency arrival times of the surface wave
were automatically picked. This was done by calculating the enve-
lope of each filtered trace, and finding the location of its maximum
along the segment corresponding to an arrival with a velocity be-
tween 1 and 3 km/s. Having obtained the arrival times, travel time
tomography was used to calculate the group velocity of the partic-
ular frequency along the profile. For the tomographic inversion the
Fast Marching Surface Tomography code (Rawlinson and Sam-
bridge, 2005) was used. These inversions provided us with six



Fig. 3. Calculated group velocities of the 2.5 Hz (black) and 10 Hz (blue) surface
waves along the profile, from south-west to north-east.
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one-dimensional velocity models (one for each centre frequency).
Group velocities of the 2.5 Hz and 10 Hz signals are illustrated in
Fig. 3 as examples. Each of these models gives the distribution of
average velocity down to a different depth. By successively strip-
ping the shallow depth models (corresponding to higher frequen-
cies), surface wave velocity distribution at depth as well as along
profile can be estimated. For example, assume two one-dimen-
sional velocity models v1 and v2 (both functions of distance along
profile) exist for two centre frequencies f1 > f2. The model velocities
give the average velocity between surface and the corresponding
sampling depth, d1 < d2. The v2 model is the weighed harmonic
average of the velocity model v1 and the velocity distribution be-
tween the depths d1 and d2, v20, which can be gives as

v20 ¼
d2 � d1
d2
v2
� d1

v1

ð2Þ

Performing this averaging scheme iteratively for lower centre
frequency (greater sampling depth) one-dimensional velocity
models, a two-dimensional model of surface wave velocity was
computed. This is shown in Fig. 4.

3. Classification

Interpretation of seismic velocities in terms of lithology can be
treated as a classification problem (e.g., Schalkoff, 1992). This ap-
Fig. 4. The final surface wave velo
proach involves categorising objects by assigning them to classes
defined by limits of the measured physical parameters, in our case
the various seismic velocities.

3.1. Manual classification using two parameters

When two independent parameters are available, classification
can be performed manually. To achieve this, a probability density
function (pdf) of the parameter distribution needs to be calculated
using the values of the available parameters and their associated
uncertainties. For example, to generate a pdf of P-wave and surface
wave velocity distribution, a common grid needs to be constructed,
with the values for vp and vsur, along with uncertainties dvp and
dvsur, specified at each grid cell. For each model grid cell, i, assum-
ing a normal error distribution, the pdf is given by:

pdfiðvp;v surÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðdvpÞiðdvsurÞi
p e

�1
2
ðvp�ðvpÞiÞ

2

dðvp Þ2i
þðvsur�ðvsur Þi Þ

2

dðvsur Þ2i

� �
ð3Þ

And the complete pdf is given by the sum of individual func-
tions generated from all available data pairs:

pdfðvp; vsurÞ ¼
1
n

Xn

i¼1

pdfiðvp;v surÞ ð4Þ

A high value for this function indicates a high probability of a
point in the model space having the corresponding values for P-
wave and surface wave velocity.

Following the computation of the probability density function, a
manual cluster analysis is performed to identify various classes.
This involves identifying topologically continuous regions, or clus-
ters, of high probability on the pdf. An important issue is the num-
ber of such clusters one attempts to identify. While it is important
to identify all possible lithological classes, it is equally important to
avoid attempts at interpretation of numerical artifacts. To identify
the optimal number, we follow the technique of Bedrosian et al.
(2007). In this method a function consisting of a sum of n Gaussian
functions that best fit the computed pdf is calculated. The misfit
between the original pdf and the Gaussian functions can then be
calculated. With increasing n, the misfit will decrease, but above
city model along the profile.



Fig. 5. Probability density function (pdf) correlating P-wave and surface wave
velocities. Warm colours correspond to high probability of the corresponding pair of
velocities existing in the models. The three most prominent clusters are marked
with red ellipses. These are labeled with the colours corresponding to the
remapping of clusters in Fig. 7.
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Fig. 6. The L-curve showing the misfit between the pdf in Fig. 5 and the best-fitting
superposition of a number of Gaussian functions. Note the change in curvature
around three Gaussian peaks.
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a certain point this decrease will become very gradual. This point
of the maximum curvature of the ‘‘L-curve” corresponds to the
number of real classes that are likely to exist in the model.

The final step in the classification process is remapping the clus-
ters into the original model space. This involves comparing the in-
put parameter values (in our case P- and surface wave velocities) at
each model grid cell to the parameter values defining the clusters,
and assigning the grid cell to the cluster with matching, or closest,
values. This provides the spatial distribution of clusters, which is
essential for a lithologic interpretation.

3.2. Neural network approach for more than two parameters

The method discussed above does not use the information con-
tained in the S-wave velocity model. However, incorporating a
third parameter in the method discussed above would require
the probability density function to be a function of three parame-
ters, and clusters would need to be identified in three-dimensional
space.

Instead, the neural network method is used. The technique used
here was developed by Bauer et al. (2008), and only its overview
will be presented here. The first phase of the analysis is the train-
ing. During this phase, a cell in parameter space (in our case, seis-
mic velocity) is chosen at random, and a data vector is constructed
using the values for each available parameter at the chosen cell.
The dimension of this vector will correspond to the number of
parameters available. When P-, S- and surface wave velocities are
available, a three-dimensional vector will represent the velocities
at the first iteration, t = 1:

~xðtÞ ¼ ½vpðtÞ;v sðtÞ;v surðtÞ�T ð5Þ

This data vector is then used as input for a two-dimensional ar-
ray of neurons. At the start of the training phase, each neuron i is
associated with a three-dimensional model vector ~miðtÞ with ran-
domly set values. The neuron b associated with a vector most sim-
ilar to the input data vector is called the winning neuron, and is
determined based on the condition:

8i; jj~xðtÞ � ~mbðtÞjj 6 jj~xðtÞ � ~miðtÞjj ð6Þ

The model vectors associated with the neurons are then up-
dated using the learning rule:

~miðt þ 1Þ ¼ ~miðtÞ þ kðtÞ � hb;iðtÞ � ð~xðtÞ � ~miðtÞÞ ð7Þ

where k is the learning rate, chosen between 0 and 1 at the start and
then logarithmically decreased at each successive iteration t, and h
the Gaussian neighbourhood function centred at the winning neu-
ron. The width of the Gaussian is also progressively decreased dur-
ing the training. This way the array of neurons converges to what is
known as the trained Kohonen layer (after Kohonen (1995)).

This layer can then be used to classify all data vectors. To visu-
alise the variations of the model vectors, following the approach of
Bauer et al. (2008) the total gradient of the Kohonen layer is
calculated:

jr~mij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d~mi

dx

� �2

þ d~mi

dy

� �2
s

ð8Þ

where x and y represent the principal directions in the Kohonen
layer. This gradient map will consist of regions with low gradient,
corresponding to model vectors being similar to the neighbouring
ones, separated by zones of high gradient, where significant
changes between model vectors occur. This corresponds to clusters
of similar model parameter values being separated by cluster bor-
ders. By treating the gradient map as a topographic image, the wa-
tershed segmentation algorithm (Vincent and Soille, 1991) can be
used to identify the clusters (Bauer et al., 2008).
Following the definition of clusters, the winning neuron is deter-
mined for each vector. The cell from which the vector was com-
puted is assigned to the cluster in which the winning neuron exists.

4. Results

4.1. Manual classification

The pdf correlating P-wave and surface wave velocity distribu-
tion is shown in Fig. 5. The P-wave velocities, as well as the corre-



Fig. 7. Profile section showing the spatial distribution of the three clusters in Fig. 5. The red cluster corresponds to the Messum complex, the green to sandstones, mudstones
and schists, and the blue to the underlying granites.

Fig. 8. Distribution of the four clusters in parameter space. For illustration purposes the three-dimensional clusters are projected into two-dimensional spaces: P-wave and
surface wave (left); P-wave and ratio of P-wave/S-wave (right).

Fig. 9. Profile section showing the spatial distribution of the four clusters identified by the neural network algorithm. Distribution of the red (Messum) and blue (underlying
granites) clusters is similar to Fig. 7, whereas the green cluster has been separated into yellow (sandstone and mudstone) and green (mica schists). Colours match the ones
used to represent geological formations in Fig. 1.

1 For interpretation of colour in Figs. 1, 3–5 and 7–9, the reader is referred to the
web version of this article.
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sponding uncertainty, were computed by Bauer et al. (2003). The
surface wave velocities were computed in this study using meth-
ods discussed earlier in this manuscript. As these methods allow
only a qualitative analysis of the resolution, and the pdf calculation
requires the uncertainty to be specified at each point, we have as-
sumed the relative uncertainties to be twice as high as those in the
P-wave model. Thus while acknowledging the surface wave model
is not as well constrained as the P-wave model, we retain a realistic
measure of uncertainty relative to the ray coverage and variations
in signal quality. The L-curve analysis, showing how well the pdf
can be fitted with an increasing number of clusters, is shown in
Fig. 6. The change in curvature in the P-wave–surface wave misfit
curve suggests three classes are present. This is consistent with a
visual examination of the pdf, where three obvious clusters can
be seen and manually picked (Fig. 5).

In order to interpret the classes, it is necessary to map them
onto a 2-D depth section. Fig. 7 shows the section, with different
colours being used to illustrate which of the three classes every
point in model space fits into.1
4.2. Neural network approach

To incorporate the information contained in the S-wave model
into our analysis, the multi-dimensional neural network approach
was used. Four input parameters were used in the analysis: sur-
face, P- and S-wave velocities, as well as the ratio between P-
and S-wave velocities. The best results were obtained when the
existence of four clusters was assumed – one more than for the
two parameter analysis discussed earlier. This might have been ex-
pected, with the additional information coming from the S-wave
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model leading to a more detailed cluster identification. The distri-
bution of the four clusters in parameter spaces is illustrated in
Fig. 8, while their spatial distribution remapped onto the profile
section is shown in Fig. 9.

5. Discussion and conclusions

The relocation of clusters onto the profile using the two differ-
ent techniques (Figs. 7 and 9) is consistent. The one obvious differ-
ence is that what is illustrated as one cluster (in green in Fig. 7) has
been subdivided into two (green and yellow in Fig. 9). This is the
result of additional information provided by the S-wave velocities.
The similarity between the figures does, however, confirm that
when only two independent input parameters are available, man-
ual cluster identification is a sufficiently reliable technique in our
study area.

The most consistent feature on the remapped sections is the re-
gion mapped in red between profile km 35 and 50. This marks the
location of the Messum intrusive complex (Fig. 1 – the colours on
the geological map correspond to the clusters in Figs. 7 and 9),
where high values are observed for all three types of seismic veloc-
ities (above 5.7–6.2 km/s for P-waves, 2.5–2.9 km/s for surface
waves, 3.0–3.5 km/s for S-waves). These values are consistent with
seismic velocities observed at similar intrusive complexes (e.g.,
Snyder et al., 2002).

The areas remapped in blue are likely to correspond to the
Damara Belt granites. While the profile does not cross the surface
exposure of these granites (Fig. 1), they are common in the study
area, and are likely to underlie the geological formations that the
profile does cross. This is consistent with Fig. 9, where the no re-
gions remapped in blue exist on the surface. The blue regions at
the surface in Fig. 7 all correspond to the Messum complex, and
are clearly inconsistent with being remapped as Damara Belt rocks.
As the two high-velocity clusters in Fig. 5 are very well defined, we
believe this inconsistency is not a shortcoming of the manual clus-
ter identification process, but a result of the lack of information
regarding the S-wave velocity as an input parameter.

The cluster remapped in green in Fig. 7 can be divided into two
distinct clusters when S-wave velocity information is available.
Thus in Fig. 9 areas remapped in green, and in yellow, can be seen.
These both have surface wave velocities below 2.4 km/s, as well as
P-wave velocities under 5.6 km/s. However, a division can be made
across around 1.80–1.85 for the ratio of P-wave to S-wave veloci-
ties, with regions exhibiting a higher ratio (lower S-wave velocity)
corresponding to the yellow cluster, and the lower ratio (higher S-
wave velocity) to the green. This correlates with the geological
map, with the green cluster corresponding to the Mica Schist,
and the yellow to the Sandstone and Mudstone formations. No
cluster that would correlate to the basalt flows has been observed
– these are likely to be too thin to have a resolvable signature in the
velocity models.

In conclusion, we have reanalyzed the seismic data from the
SIMBA experiment, and successfully identified surface wave arriv-
als. Using tomographic inversion of travel times of different group
velocities, a surface wave velocity model was constructed for the
uppermost 400 m. This model was combined with existing P-
and S-wave velocity models. Our study showed that when two
independent parameters (e.g., P-wave and surface wave velocities)
are available, manual identification of clusters is a reliable tool for
identifying lithological structures along the profile. When more
than two parameters are available (e.g., additionally S-wave
and/or Poisson’s ratio), manual identification becomes much more
difficult due to the visualisation problem of a function with more
than two input parameters. For this reason an automatic neural
network technique was used to identify clusters (corresponding
to regions in the profile depth section) sharing specific parameters.
These results do not contradict the manual process, but enhance it
due to the fact more information is made available with the pres-
ence of additional input models.
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