November 2015

הפקולטה למדעים מדויקים ע"ש ריימונד ובברלי סאקלר החוג למדעי כדור הארץ

RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES DEPARTMENT OF GEOSCIENCES

P-wave Attenuation with Implications for Earthquake Early Warning

Itzhak Lior

Dr. Alon Ziv and Dr. Raul Madariaga

Overview

- P-wave attenuation equations
 - Used for real-time magnitude estimations
 - Empirically derived (up to now)
- Deriving P-wave theoretical attenuation laws
- Relying on well established models
 - Brune omega-squared model
 - Parseval's theorem
- Verification against Japan and California data
- Implications for Earthquake Early Warning (EEW)
- Prospective

- Brune omega-squared model
- Displacement $\Omega(\omega) = \frac{\Omega_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$

 $\omega = 2\pi f$: Frequency $\Omega(\omega)$: Displacement spectral amplitude $\dot{\Omega}(\omega)$: Displacement spectral amplitude Ω_0 : Low Frequency plateau $\omega_0 = 2\pi f_0$: Corner frequency

• <u>Velocity</u> $\dot{\Omega}(\omega) = \frac{\omega \Omega_0}{1 + \left(\frac{\omega}{\omega_o}\right)^2}$

• <u>Displacement</u> $\Omega(\omega) = \frac{\Omega_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$

<u>Velocity</u>

$$\dot{\Omega}(\omega) = \frac{\omega \Omega_0}{1 + \left(\frac{\omega}{\omega_o}\right)^2}$$

- <u>Displacement</u> $\Omega(\omega) = \frac{\Omega_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$
 - $\Omega_0 = \frac{M_0 U_{\varphi\theta} F_s}{4\pi\rho C_P^3 R}$

 M_0 : Seismic moment $U_{\varphi\theta}$: Radiation pattern F_s : Free surface correction ρ : Density C_P : P-wave velocity R: Hypocentral distance

Velocity

$$\dot{\Omega}(\omega) = \frac{\omega \Omega_0}{1 + \left(\frac{\omega}{\omega_o}\right)^2}$$

- <u>Displacement</u> $\Omega(\omega) = \frac{\Omega_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$
- $\Omega_0 = \frac{M_0 U_{\varphi\theta} F_s}{4\pi\rho C_P^3 R}$

 M_0 : Seismic moment $U_{\varphi\theta}$: Radiation pattern F_s : Free surface correction ρ : Density C_P : P-wave velocity R: Hypocentral distance k: Constant C_s : S-wave velocity r: Rupture radius

- <u>Displacement</u> $\Omega(\omega) = \frac{\Omega_0}{1 + \left(\frac{\omega}{\omega_o}\right)^2}$
- $\Omega_0 = \frac{M_0 U_{\varphi\theta} F_s}{4\pi\rho C_p^3 R}$

Velocity

 $\omega\Omega_0$

(ω

 M_0 : Seismic moment $U_{\varphi\theta}$: Radiation pattern F_s : Free surface correction ρ : Density C_P : P-wave velocity R: Hypocentral distance k: Constant C_S : S-wave velocity r: Rupture radius $\Delta \tau$: Stress drop

y(t): Time series Y(f): Fourier transform of y(t)

Frequency Domain Root-Mean-Square

• Time domain rms:

$$y_{rms} = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} |y(t)|^2 dt}$$

• Parseval's theorem:

$$\int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |Y(f)|^2 df$$

y(t): Time series Y(f): Fourier transform of y(t)

Frequency Domain Root-Mean-Square

• Time domain rms:

$$y_{rms} = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} |y(t)|^2 dt}$$

• Parseval's theorem:

$$\int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |Y(f)|^2 df$$

$$y_{rms} = \sqrt{\frac{\int_{-\infty}^{\infty} |Y(f)|^2 df}{T_{S-P}}}$$

y(t): Time series Y(f): Fourier transform of y(t)

Frequency Domain Root-Mean-Square

• Time domain rms:

$$y_{rms} = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} |y(t)|^2 dt}$$

• Parseval's theorem:

$$\int_{-\infty}^{\infty} |y(t)|^2 dt = \int_{-\infty}^{\infty} |Y(f)|^2 df$$

$$y_{rms} = \sqrt{\frac{\int_{-\infty}^{\infty} |Y(f)|^2 df}{T_{S-P}}}$$

• Time Window:

$$T_{S-P} = R\left(\frac{1}{C_S} - \frac{1}{C_P}\right) \stackrel{\text{\tiny def}}{=} R\eta$$

Attenuation Law Derivation

$$\Omega(\omega) = \frac{\Omega_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2} \qquad \dot{\Omega}(\omega) = \frac{\omega\Omega_0}{1 + \left(\frac{\omega}{\omega_0}\right)^2}$$
$$y_{rms} = \sqrt{\frac{\int_{-\infty}^{\infty} |Y(f)|^2 df}{T_{S-P}}}$$
$$f_0 = \frac{kC_S}{r}$$
$$\Omega_0 = \frac{M_0 U_{\varphi \theta} F_S}{4\pi \rho C_P^3 R}$$
$$M_0 = \frac{16}{7} \Delta \tau r^3$$

 $T_{S-P} = R\eta$

Attenuation Law Derivation

Attenuation Law Derivation

Attenuation Law Derivation

Data

- Japan
 - K-net + KiK surface
 - 353 accelerograms
 - 42 earthquakes
 - 5.1<M<7.3
- California
 - CISN
 - 403 velocity seismograms
 - 120 earthquakes
 - 4<M<5.7

Parameters

$$d_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}} \qquad v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$
$$\epsilon = \frac{U_{\varphi\theta}F_s}{4\pi\rho C_P^3} \sqrt{\frac{\pi k C_S}{2\eta}}$$

Parameters

$$d_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}} \qquad v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$
$$\epsilon = \frac{U_{\varphi\theta}F_s}{4\pi\rho C_P^3} \sqrt{\frac{\pi k C_S}{2\eta}}$$

•
$$U_{\varphi\theta} = 0.52$$

•
$$F_s = 2$$

- $\rho = 2600 \, kg/m^3$
- $C_S = 3200 \ m/s$
- $C_P = 5333 \, m/s$
- *k* = 0.32
- $\eta = 1/8 \ s/km$
- $\epsilon = 753 \cdot 10^{-15} \, 1/Pa$

AZ, AE, AN: Velocity or Displacement samples

Validation

Parameters

$$d_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}} \qquad v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$
$$\epsilon = \frac{U_{\varphi\theta} F_s}{4\pi\rho C_P^3} \sqrt{\frac{\pi k C_S}{2\eta}}$$

•
$$U_{\varphi\theta} = 0.52$$

•
$$F_s = 2$$

- $\rho = 2600 \, kg/m^3$
- $C_S = 3200 \ m/s$

•
$$C_P = 5333 \, m/s$$

- *k* = 0.32
- $\eta = 1/8 \ s/km$
- $\epsilon = 753 \cdot 10^{-15} \, 1/Pa$
- M_o , R Catalog

•
$$rms = \sqrt{\sum_{i=1}^{h} [AZ_i^2 + AE_i^2 + AN_i^2]/h}$$

Stress Drop Determination

$$d_{rms} = \epsilon \left(\frac{16}{7} \Delta \tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}}$$

$$v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$

Stress Drop Determination

Stress Drop Determination

Stress Drop Determination

Andrews (1986) and Snoke (1987)

 T_r : Rupture duration

Validation

Stress Drop Determination

• Condition:

$$T_{S-P} > T_r$$

$$T_r = \frac{2r}{0.9C_S}$$

• 67% of data satisfies the condition

Stress Drop Determination

$$\Delta \tau = \frac{7}{16} M_0 \left(\frac{1}{kC_S} \cdot \frac{1}{2\pi} \frac{v_{rms}}{d_{rms}} \right)^3$$

Median: $\Delta \tau = 7.9 MPa$

Observed Attenuation

<u>Displacement</u>

• <u>Velocity</u>

$$d_{rms} = \epsilon \left(\frac{16}{7} \Delta \tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}}$$

$$v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$

Observed Attenuation

• **Displacement**

• <u>Velocity</u>

$$d_{rms} = \epsilon \left(\frac{16}{7} \Delta \tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}}$$

$$v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$

$$M_0 = \frac{16}{7} \Delta \tau r^3$$

Observed Attenuation

• **Displacement**

• <u>Velocity</u>

$$d_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/6} M_0^{5/6} \frac{1}{R^{3/2}} \qquad \qquad v_{rms} = \epsilon \left(\frac{16}{7}\Delta\tau\right)^{1/2} M_0^{1/2} 2\pi k C_S \frac{1}{R^{3/2}}$$

$$M_0 = \frac{16}{7} \Delta \tau r^3$$

$$d_{rms} = \epsilon \frac{16}{7} \Delta \tau \left(\frac{r^{5/3}}{R}\right)^{3/2} \qquad \qquad v_{rms} = \epsilon \frac{16}{7} \Delta \tau 2\pi k C_S \left(\frac{r}{R}\right)^{3/2}$$

$$\epsilon = \frac{U_{\varphi\theta}F_s}{4\pi\rho C_P^3} \sqrt{\frac{\pi k C_s}{2\eta}}$$

Validation Observed Attenuation

$$d_{rms} = \epsilon \frac{16}{7} \Delta \tau \left(\frac{r^{5/3}}{R}\right)^{3/2}$$

$$v_{rms} = \epsilon \frac{16}{7} \Delta \tau 2\pi k C_S \left(\frac{r}{R}\right)^{3/2}$$

Implications for EEW: rms to Peak Amplitude

- Displacement
- $Pd = 2.0(\pm 0.5)d_{rms}$

Velocity

•
$$Pv = 2.3(\pm 0.5)v_{rms}$$

Validation

Implications for EEW: τ_c

- Characteristic period
- Real-time magnitude proxy
 - $\tau_c Pd$ EEWS

$$\tau_c \stackrel{\text{\tiny def}}{=} 2\pi \sqrt{\frac{\int_{t_0}^{t_0 + \Delta t} u^2 dt}{\int_{t_0}^{t_0 + \Delta t} v^2 dt}} = 2\pi \frac{d_{rms}}{v_{rms}}$$

Validation

Implications for EEW: τ_c

- Characteristic period
- Real-time magnitude proxy
 - $\tau_c Pd$ EEWS

$$\tau_c \stackrel{\text{\tiny def}}{=} 2\pi \sqrt{\frac{\int_{t_0}^{t_0 + \Delta t} u^2 dt}{\int_{t_0}^{t_0 + \Delta t} v^2 dt}} = 2\pi \frac{d_{rms}}{v_{rms}}$$

$$f_0 = \frac{1}{2\pi} \frac{v_{rms}}{d_{rms}}$$

Validation

Implications for EEW: τ_c

- Characteristic period
- Real-time magnitude proxy
 - $\tau_c Pd$ EEWS

Validation

Implications for EEW: τ_c

- Characteristic period
- Real-time magnitude proxy
 - $\tau_c Pd$ EEWS

$$\Delta \tau = \frac{7}{16} M_0 \left(\frac{1}{kC_S} \cdot \frac{1}{2\pi} \frac{v_{rms}}{d_{rms}} \right)^3$$

Validation

Implications for EEW: τ_c

- Characteristic period
- Real-time magnitude proxy
 - $\tau_c Pd$ EEWS

$$\tau_c = \frac{1}{kC_s} \sqrt[3]{\frac{7}{16} \frac{M_0}{\Delta \tau}} \qquad \Delta \tau = \frac{7}{16} M_0 \left(\frac{1}{kC_s} \cdot \frac{1}{2\pi} \frac{v_{rms}}{d_{rms}}\right)^3$$

Magnitude Estimations

• Attenuation laws show:

$$d_{rms} \propto \Delta \tau^{1/6} M_0^{5/6} R^{-3/2}$$

$$v_{rms} \propto \Delta \tau^{1/2} M_0^{1/2} R^{-3/2}$$

Magnitude Estimations

$$M_0 \propto d_{rms}^{1.2} \Delta \tau^{-0.2} R^{1.8}$$
$$M_0 \propto v_{rms}^2 \Delta \tau^{-1} R^3$$

Magnitude Estimations

$$M_0 \propto d_{rms}^{1.2} \Delta \tau^{-0.2} R^{1.8}$$
$$M_0 \propto v_{rms}^2 \Delta \tau^{-1} R^3$$
$$\tau_c \longleftrightarrow M_0 \propto v_{rms}^3 d_{rms}^{-3} \Delta \tau$$

Magnitude Estimations

$$M_0 \propto d_{rms}^{1.2} \Delta \tau^{-0.2} R^{1.8}$$
$$M_0 \propto v_{rms}^2 \Delta \tau^{-1} R^3$$
$$\tau_c \longleftrightarrow M_0 \propto v_{rms}^3 d_{rms}^{-3} \Delta \tau$$
$$M_0 \propto d_{rms}^{1.5} v_{rms}^{-0.5} R^{1.5}$$

Discussion Magnitude Estimations

Predicted – Observed Magnitude

Conclusion

- New theoretical attenuation laws
 - Provide source parameter weightings
 - Better stress drop and seismic moment understanding
- New stress drop estimation schemes
- Verified for Japan and California
- Earthquake Early Warning (EEW) implications
 - Little calibration needed
 - rms peak amplitude relation
 - $d_{rms}^{1.5} / v_{rms}^{0.5}$ magnitude estimation
 - $\tau_c = 1/f_0$
- prospective
 - Stress drop estimation
 - Ground motion prediction equation