

Induced microseismic activity at the Soultz-sous-Forêts EGS site: Main scientific results obtained in different experimental conditions.

Dr. Nicolas Cuenot

E-mail: cuenot@soultz.net

GEIE "Exploitation Minière de la Chaleur" – EEIG "Heat Mining"

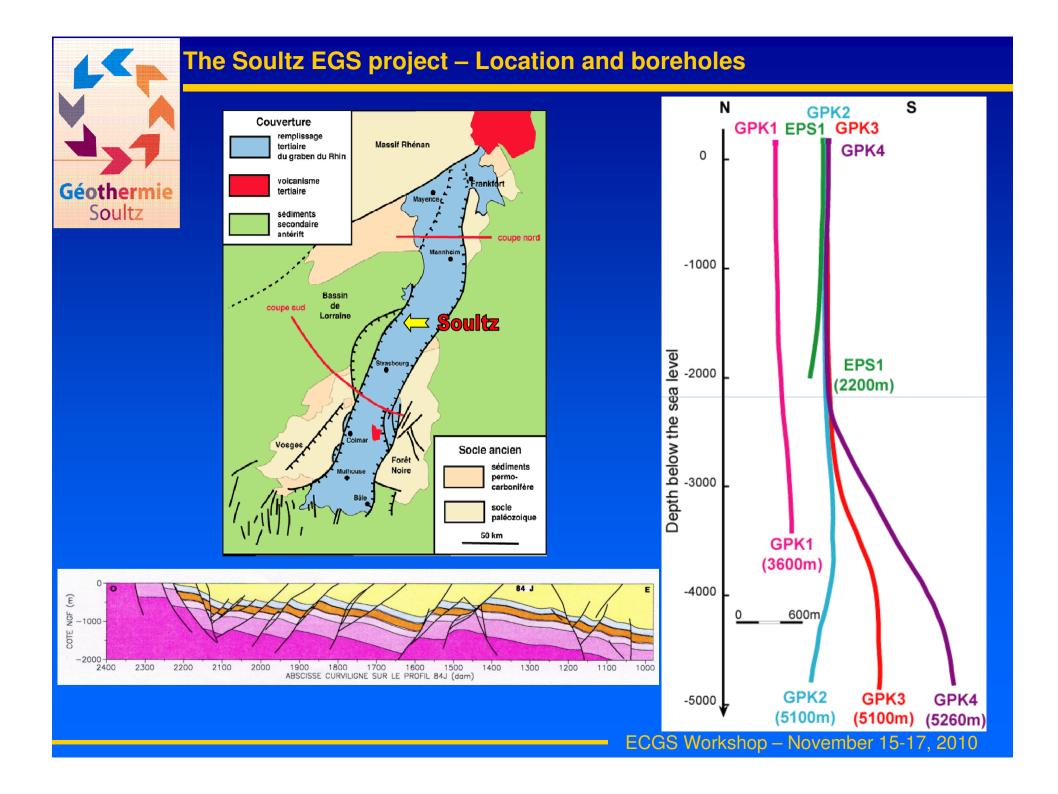
Route de Soultz - BP 40038 - 67250 Kutzenhausen - Tel.: 33 (0)3 88 80 53 63 - Fax.: 33 (0)3 88 80 53 51

ECGS Workshop on Induced Seismicity – Luxembourg – November 15-17, 2010

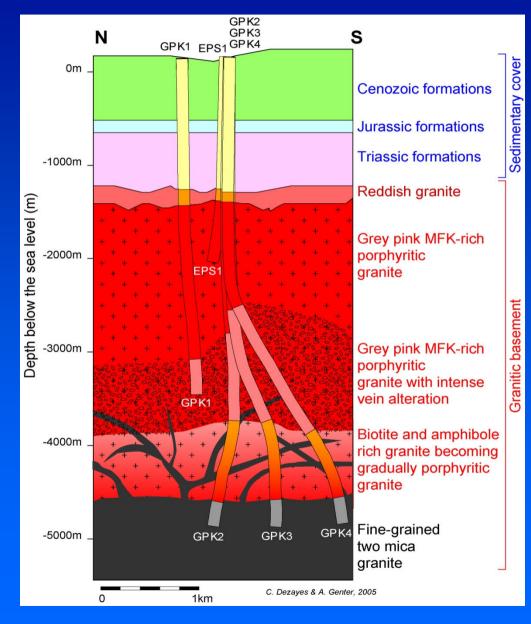
- The EGS site of Soultz-sous-Forêts
- Seismological networks

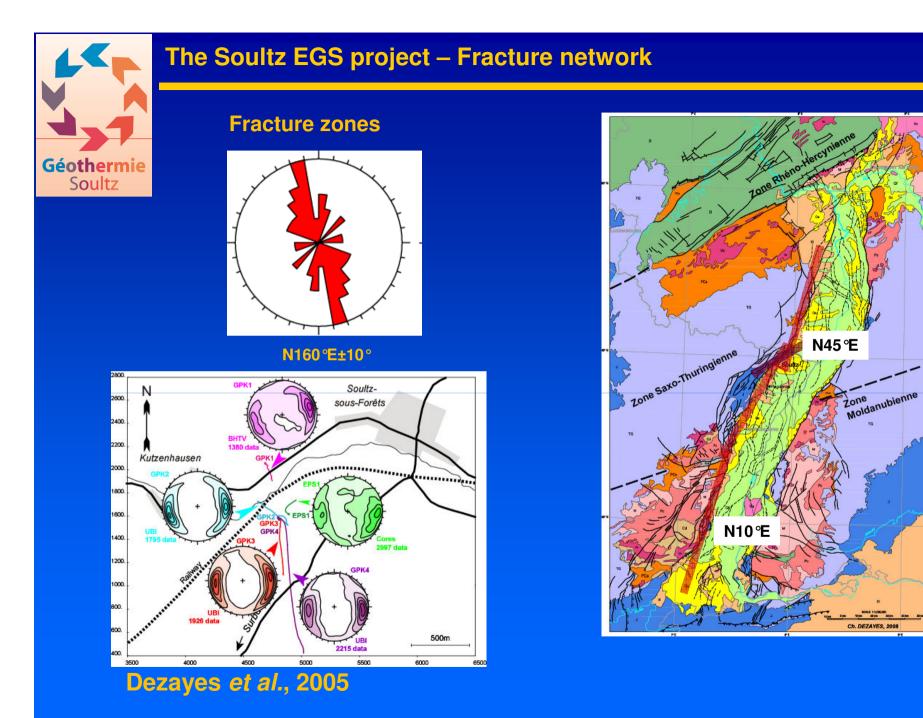
Outline:

- > Seismicity during drilling
- > Seismicity during hydraulic and chemical stimulations
- Seismicity during circulation tests
- > Use of seismic data
- Conclusions


Public Funding

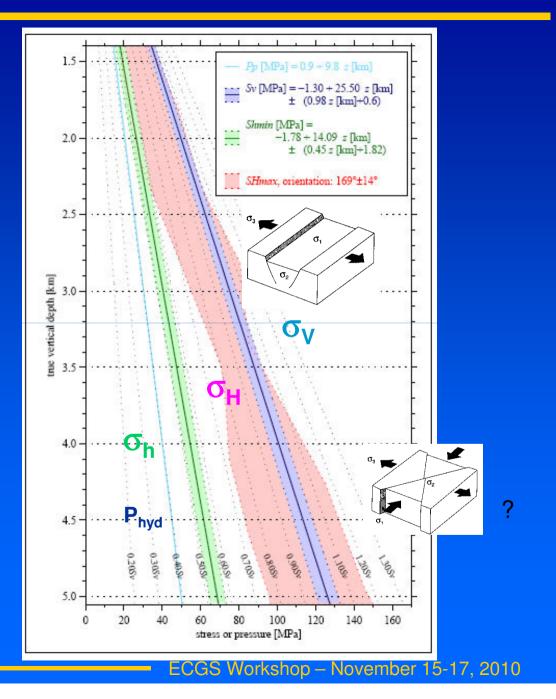
Scientific Partners


GEIE "Exploitation Minière de la Chaleur" EEIG "Heat Mining



The Soultz EGS project – Synthetic geological profile

ECGS Workshop - November 15-17, 2010



ECGS Workshop – November 15-17, 2010

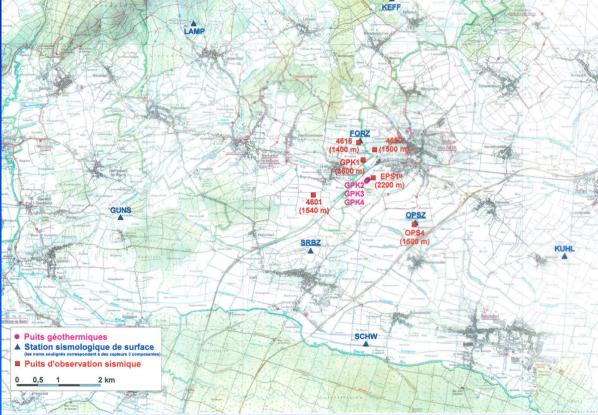
The Soultz EGS project – Stress field

From Valley, 2007

The Soultz EGS project – Main project steps

1987 – 1991 Exploration phase	1991 – 1998 Creation of the 2 wells system GPK1/GPK2 at - 3600 m	1999 – 2007 Creation of the 3 wells system GPK2/GPK3/GPK4 at - 5000 m	2007 – 2009 Construction of the first production unit ORC - 1.5 MWe
 Drilling GPK1 at - 2000 m Coring EPS1 at - 2227 m 	 Deepening of GPK1 at 3600 m and stimulation Drilling of GPK2 at 3880 m and stimulation Circulation test between the 2 wells (4 months) 	 Deepening of GPK2 at 5080 m and stimulation Drilling of GPK3 at 5100 m and stimulation Drilling of GPK4 at 5270 m and stimulation Circulation test between the 3 wells (5 months) Complementary stimulations (chemical) 	 Installation of surface equipment (turbine and generator, heat exchangers, cooling systems) Installation of the LSP in GPK2 at - 350 m Inauguration of the power plant 13.06.2008 Installation of the ESP in GPK4 at - 500m Submersible pumps tests

ECGS Workshop – November 15-17, 2010



Seismological networks

2 seismological networks: 1 downhole & 1 on surface

 From 1991 to 2002:
 Temporary downhole stations
 (accelerometers + geophones + hydrophones)
 Temporary surface stations
 (seismometers)

From 2002
 Temporary downhole stations
 Permanent surface stations
 Temporary surface stations

Seismicity during drilling

2 exploration wells GPK1 & EPS1

> 3 seismic observation wells 4550, 4601 & OPS4

> 3 deep geothermal wells GPK2, GPK3 & GPK4

> around 25 km of wells drilled mostly in granite

NO EVIDENCE OF DRILLING-INDUCED SEISMICITY AT SOULTZ!!

"Upper" reservoir

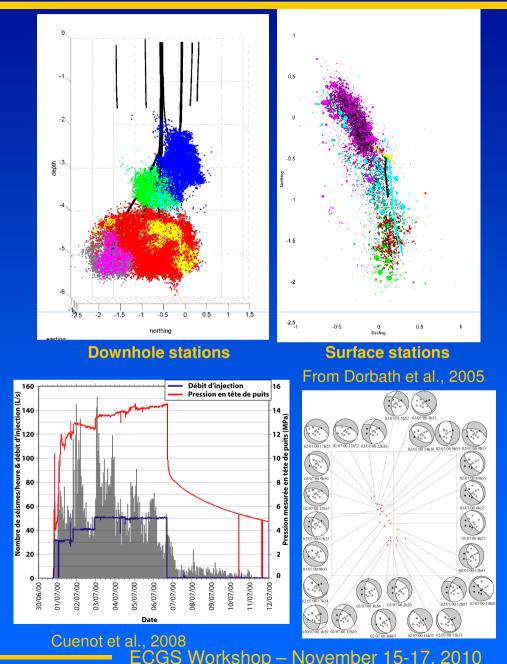
- GPK1 hydraulic stimulation 1993
- GPK2 hydraulic stimulation 1994 & 1995

"Lower" reservoir

- GPK2 hydraulic stimulation 2000
- GPK3 hydraulic stimulation 2003
- GPK4 hydraulic stimulation 2004 & 2005

	Injected volume	Maximum flow rate	Maximum overpressure	Induced seismicity	Larger magnitude events
GPK2 (2000)	~23400 m ³	50 I/s	13 MPa	~14000 (located)	75 (M≥1.8) 1 x 2.6 2 x 2.4
GPK3 (2003)	~34000 m ³	50 I/s; 60 & 90 I/s "Focused stimulation"	18 MPa	~22000 (located)	43 (M≥1.8) 1 x 2.9 2 x 2.7
GPK4 (2004)	~9300 m³	45 l/s	17 MPa	~5800 (located)	3 (M≥1.8) 1 x 2.0
GPK4 (2005)	~12300 m ³	45 I/s	19 MPa	~3000 (located)	17 (M≥1.8) 1 x 2.6 1 x 2.3

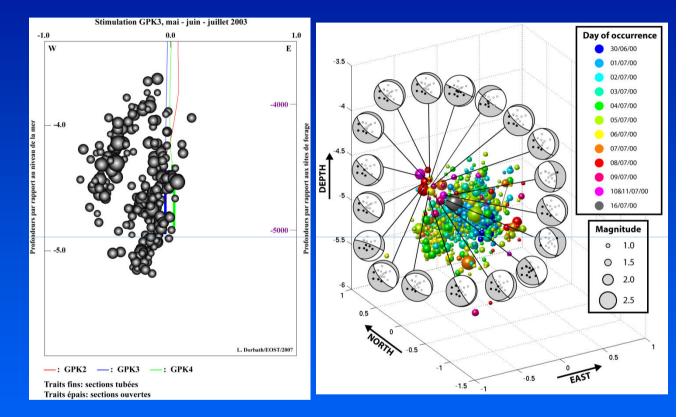
ECGS Workshop - November 15-17, 2010

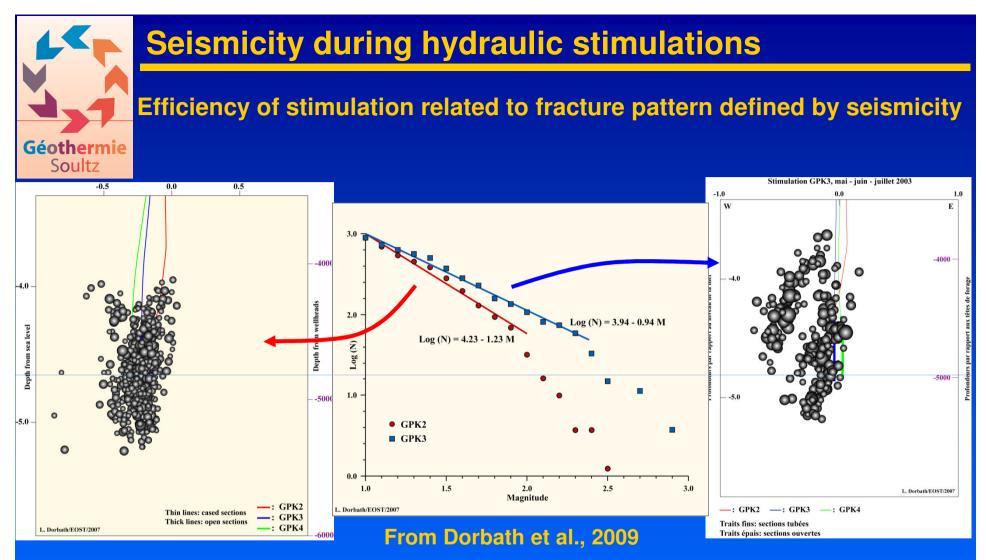


- Several thousands of earthquakes
- > Magnitude range: -2 to 2.9


➤ change of hydraulic parameters → instantaneous variation of seismic activity

➢ Observation of large magnitude (M≥2) events occurred in the shut in phase


From focal mechanisms: doublecouple solution for all seismic events : shearing on pre-existing fracture planes. No evidence of tensile rupture (Horalek et al., 2008)


> Stronger earthquakes : discussion between 2 explanations

Géothermie Soultz

high stress drop: strong energy released on small fractures (Michelet et al, 2004) presence of large faults, able to produce seismic events of such magnitudes (Dorbath et al., 2009; Cuenot, 2009)

GPK2: dense network of small to medium scale fractures

→Successful stimulation

(improvement of injectivity index)

GPK3 : fault-driven seismicity

→ No significant improvement of injectivity index)

ECGS Workshop – November 15-17, 2010

> growing fear due to:

- the largest earthquakes (vibration, sound, moving objects)
- repetition of felt earthquakes (within a short period and from one stimulation test to another)

Iots of phone calls (complain or ask for information)

complaints to local authorities from individuals or associations

> articles in local newspapers

 \succ around 30 complaints for presumed damages, which were evaluated by experts from insurance companies

Iong-term risk of strong opposition to the project

Soultz-sous-Forêts DNA 12/06/03

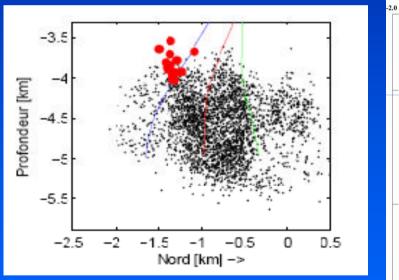
Géothermie: la secousse qui inquiète la population

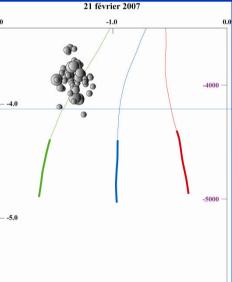
Nombre d'habitants de la large région de Soultz-sous-Forêts, ont été réveillés en sursaut dans la nuit de mardi à mercredi. Peu avant 1 h, il y a eu une violente secousse. perceptible jusqu'à Haguenau. Une conséquence des essais géothermiques.

questions des élus et dissi-

l'assurance se rendront sur place pour constater les faits » Une visite prochaine sur le site de la géothermie a été demandée par certains ques ont réitéré leurs propos per leurs inquiétudes, André qui se voulaient rassurants à élus; elle leur permettra Gérard et Pascal Vix, deux propos de dégâts éventuels d'en savoir davantage sur le des responsables du Grou- provoqués par ces phénosujet

2010




Seismicity during chemical stimulations

> RMA (Regular Mud Acid) in May 2006; max flow rate: 28 l/s, aiming at dissolving minerals like clay, feldspars and mica.

> Chelatants (NTA) in October 2006; max flow rate: 40 I/s, aiming at acting on calcite

> OCA (Organic Clay Acid) in February 2007; max flow rate: 55 I/s, used in high temperature medium with high clay content.

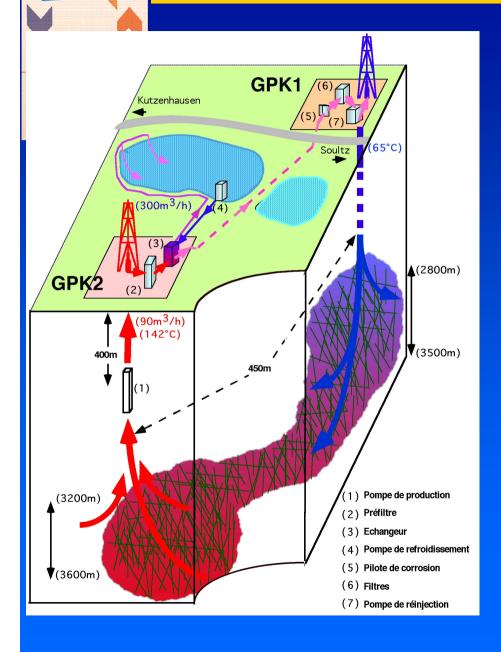
Left figure: seismicity during the RMA test

Right figure: seismicity during the OCA test

both from EOST (J. Charléty & L. Dorbath)

RMA: ~20 seismic events, highest magnitude: 1.9 (earthquake not felt) NTA: no seismicity OCA: ~80 seismic events, highest magnitude: 1.5

1997 : circulation between GPK2 (pump-assisted production) and GPK1 (re-injection) for 4 months \rightarrow NO seismicity

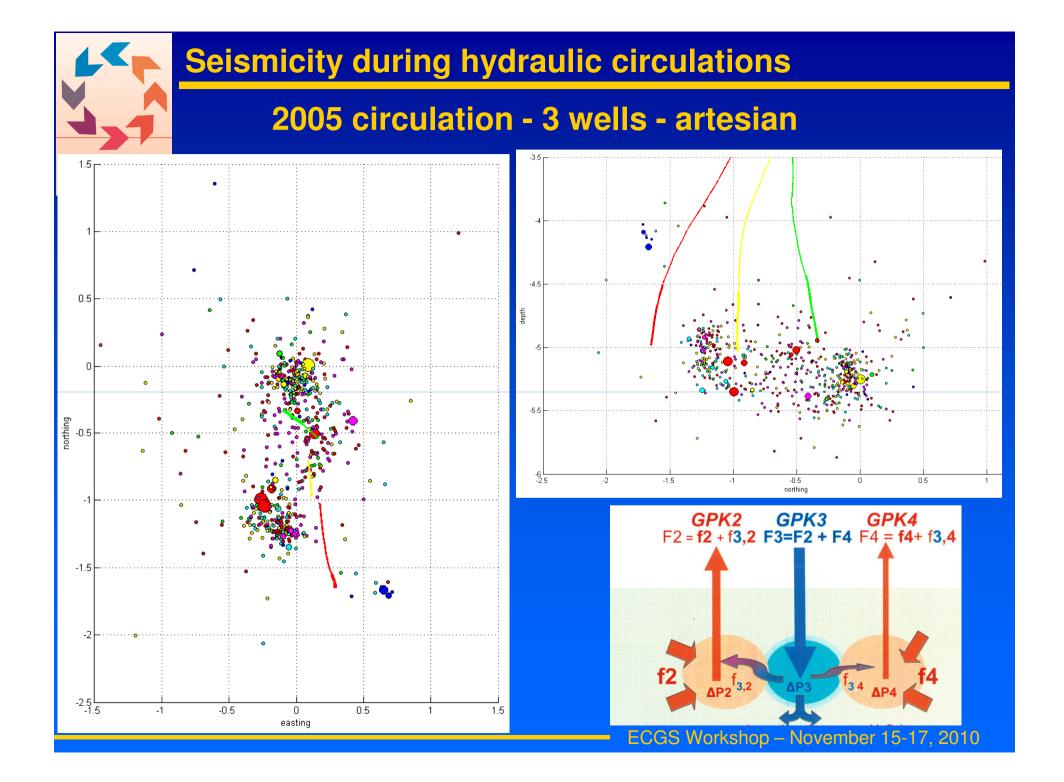

2005: artesian circulation between GPK2/GPK4 (production) and GPK3 (re-injection) for 6 months

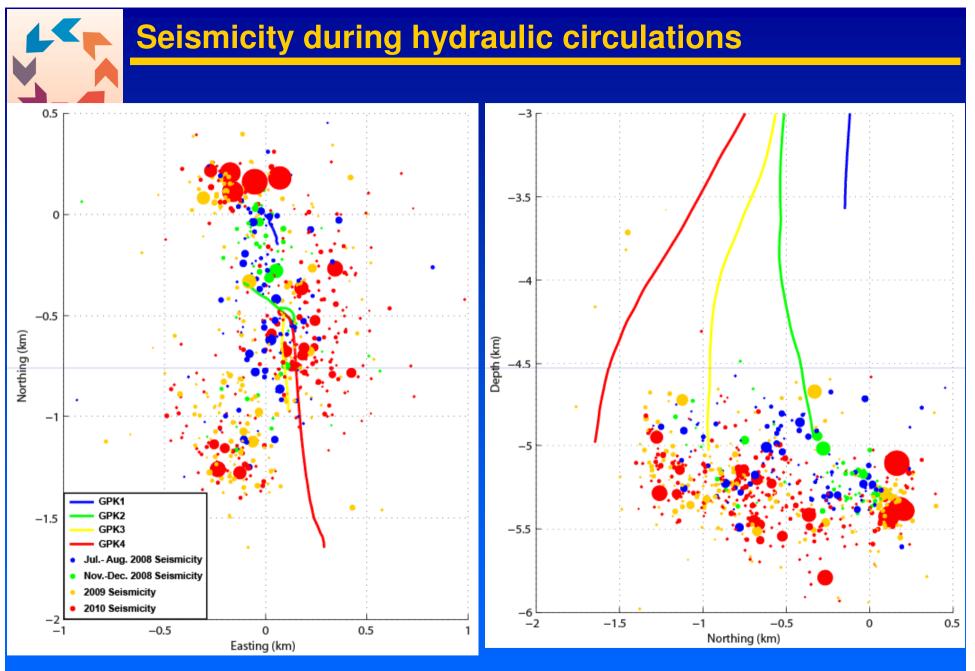
2008: circulation between GPK2 (pump-assisted production) and GPK3 (re-injection) for 2 months (July-August 2008)

2008: circulation between GPK2/GPK4 (pump-assisted production) and GPK3 (re-injection) for 2 months (November-December 2008)

2009: circulation between GPK2/GPK4 (pump-assisted production) and GPK3 (re-injection) for ~7 months (mid-March to October 2009)

2009-2010: circulation between GPK2 (pump-assisted production) and GPK3/GPK1 (re-injection) (November 2009 – October 2010)


1997 GPK1-GPK2 circulation test

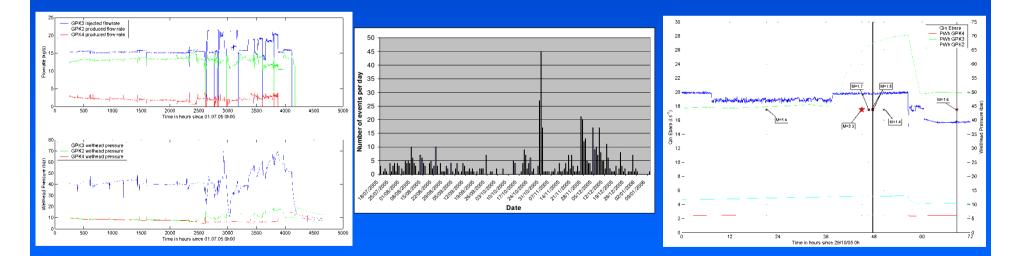

NO OBSERVED SEISMICITY!!

ECGS Workshop - November 15-17, 2010

	JulDec. 2005	JulAug. 2008	NovDec. 2008	MarOct. 2009	Nov. 09-Oct. 10
GPK2 prod. flowrate	~12 l.s ⁻¹	~25 l.s ⁻¹	~17 l.s ⁻¹	~20 l.s ⁻¹ then ~22 l.s ⁻¹	~18 l.s ⁻¹
GPK4 prod. flowrate	~3 l.s ⁻¹	-	~12 l.s ⁻¹	~12 l.s ⁻¹ then 9 l.s ⁻¹	-
GPK3 inj. flowrate	~15 l.s ⁻¹ then ~20 l.s ⁻¹	~23 l.s ⁻¹	~12 l.s ⁻¹ then ~27 l.s ⁻¹	~20 l.s ⁻¹ , 10 l.s ⁻¹ then 11 l.s ⁻¹	~15 l.s ⁻¹
GPK3 max. pressure	4 MPa then 7 MPa	7.3 MPa	2.8 MPa then 8.6 MPa	~6 MPa	~6 MPa
GPK1 inj. flowrate	-	-	-	18 l.s ⁻¹	~3 l.s⁻¹
GPK1 max. pressure	-	-	-	~0.7 MPa	~0.5 MPa
Number of earthquakes	~600	~190	53	205	~400
Highest magnitude	2.3	1.4	1.7	1.7	2.1

Jul.-Aug. 2008, Nov.-Dec. 2008, 2009, 2010 circulation

ECGS Workshop - November 15-17, 2010

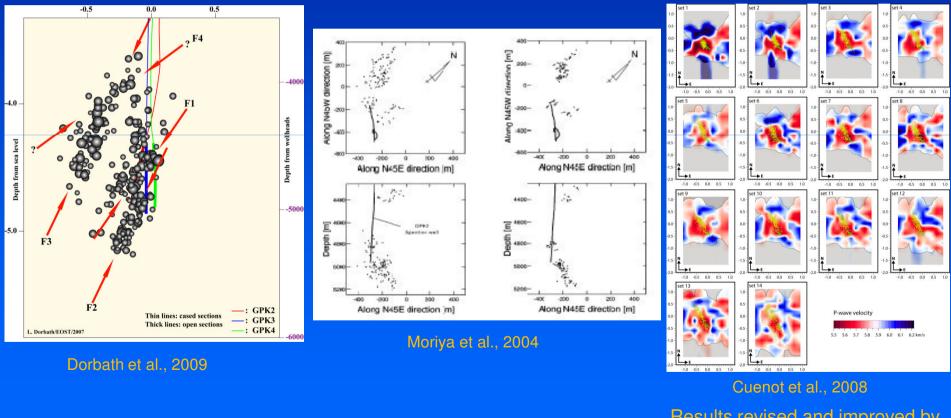


➢ Moderate microseismic activity, but possible occurrence of larger earthquakes (M≥2)

Stable hydraulic regime : low seismic activity, but change of hydraulic parameters followed by increase of seismic activity and sometimes by larger events

> Recently, observation of 3 earthquakes of magnitude \geq 2, occurred under stable hydraulic conditions:

> Same areas activated during all circulation tests.

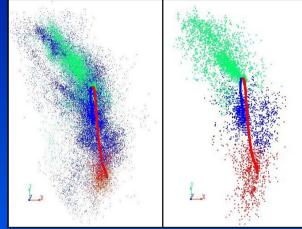

Use of seismic data

Géothermie

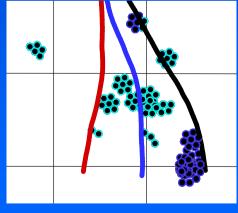
Soultz

Characterisation of the geothermal reservoir properties

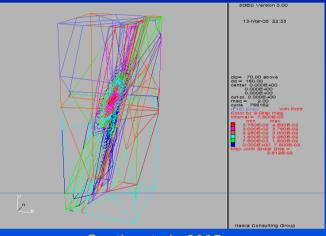
- structural information
- physical and mechanical processes

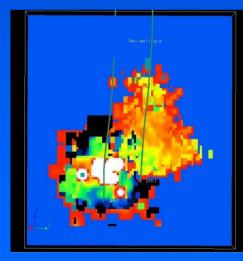

Results revised and improved by Calo' (next talk)

ECGS Workshop - November 15-17, 2010


Géothermie Soultz

Use of seismic data


Constraint for thermo-hydro-mechanical models


Baujard et al., 2005

Kohl & Mégel, 2005

Gentier et al., 2005

Royer & Voillemont, 2005

ECGS Workshop – November 15-17, 2010

Conclusions

> Observation of microseismic activity during hydraulic & chemical stimulations and during circulation tests, but no evidence of drillinginduced earthquakes

> High activity during stimulation tests, moderate level during circulation tests at stable flow regime

Observation of several larger magnitude earthquakes during shut in phase (both for stimulation & circulation tests)

 \succ Variation of hydraulic parameters \rightarrow variation of the behaviour of the seismic activity

 \rightarrow Recent observation of M \geq 2 earthquakes despite stable hydraulic regime

> During recent circulation tests, seismicity developed always in the same areas