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dynamic fault weakening for
extended earthquake sources




Key Talking Points

Reconciling seismological measurements,
geological observations and the key findings
of laboratory experiments

Model dependence. Estimated parameters
are model dependent and they do not allow
us to distinquish the processes controlling
dynamic fault weakening

Scale dependence: implications for self-
similarity



Focus: Fault Zone Physical
Processes during Seismic Slips

How does shear stress (t) vary with slip () during earthquakes?

(Focus is on large slip, e.g., 0> 0.1 m, well beyond slips of order
0.01 mm to 0.5 mm at which events are thought to nucleate)

What physical mechanism of weakening during slip?

(Argued here: Different physical mechanisms can control dynamic
weakening each of which has its own spatial and temporal length scales)

What fracture energy (G) is implied by the T vs. o relation?

(Important because seismological fracture energy 1s different from fracture
energy in fracture mechanics)



(1) Lessons from
geological observation

\Y

. A
Fault zone structure is complex: //\/& V]
volumetric versus surface processes A\ v&

Complex damage zones: energy loss outside the
Sllp Zone. G' = Wb = Won+WOff Vpeak = ‘/limit
Impact on fracture enerqy and peak slip velocity.

Structure of the fault core
impact on hydraulic and thermal properties

Principal slipping zones (strain localization)
have a finite, although small, thickness
and are geometrically complex.



(1) Lessons from seismology

Seismological investigations rely on a
phenomenological description of source

parameters

We measure global source parameters
M., Eg, O,, D, *°°%, Fault Area: A=L*W, M,

virtual mathematical plane of zero thickness) ?h.]gﬁmmh:;
Ao (E), Acy(E), At,(E)=T,(E)- T,(E), V,(E),
Dtot(g)l Dmean;ﬁ%l Dmax IVpeak(g)

from Dahelm Workshop report (2005)

We measure integral quantities
Breakdown Work W, or seismological fracture energy G’



(1) Lessons from Lab experiments
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Dynamic Fault Weakening

It - & -D 7o
Abrasion & Shg @ 7,
Melting Wear
Porosity &
permeability
evolution

Thermal
Pressurization

Flash
Heating



The Macroscopic Frictional Work

We have defined the macroscopic frictional
work as the irreversible part of mechanical
work, which is the work that does not go
into elastic strain energy and kinetic
energy, and it is partitioned into surface
energy and heat (here for heat we mean all
the distinct dissipative mechanisms such as

high frequency stress waves, plastic
deformation on- and off-fault)

Work Rate T Au; = 27 + Aq

Frictional Work (:5( ) fTAM dt —de(AM)
Total Frictional Work AE; fdefT Audt = fdefT d(Au,)

Breakdown Work w, f (z()-7.. ) 6(t)dt
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Kinematic rupture models imaged from
geophysical data inversions

1979 Imperial Valley

Rupture histories are used
to constrain the traction
evolution and to infer
dynamic rupture parameters
as well as seismological
fracture energy.
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Estimates of dynamic parameters

for real earthquakes

We infer the traction change evolution on the fault plane by using the rupture history

We solve the Elastodynamic equation using the slip velocity history as a
boundary condition on the fault

o(x,t)= —% Au(x,t)+ J:” AU(}é, TK(x — g,l‘ — T)dgdf Fukuyama & Madariaga (1998)
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Reconstructing stress evolution
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JFIGURE 1 (a) Comparison of slip velocity, slip, and traction time histories at a target point on a
fault plane using a smoothed Yoffe function as a source time function. Black solid circles indicate
the time of peak slip velocity (T,.) and the gray solid circles indicate the end of weakening (7).
(b) Corresponding traction versus slip behavior: the same circles of panel a are used to indicate
the parameters D,, D'.., and D,.

Cocco M., E. Tinti, C. Marone & A. Piatanesi (2009),



Averaging on the fault plane

stress drop

For a scale-independent
model we can average local
estimates of stress drop on

different fault portions s top o kg2 19 svess dop or g Tmex 1
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(2) Model Dependence

Stress drop can be inferred from

Seismic moment and source radius
Brune stress drop: ground acceleration high frequency plateau

Rupture history through quasi-dynamic models
Stress drop estimates are strongly model dependent

p T M
r=CL Ao =20 M, f’ = const x Ao
I 16 » oJe

(Equations derived assuming circular source with constant rupture velocity)

Stress drop from quasi-dynamic models varies on the
fault plane and averaging is allowed only for scale-

independent models



Scaling of breakdown work with slip

Breakdown Work Scaling
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Comparison with lab estimates
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(3) Scale dependence

In a scale-dependent model, averaging is not allowed and we should‘apn'\\/\a physically
coherent approach to deal with different lengths-scales. (\&

Asserting self-similarity of earthquake ruptures implies that "\/\\:a,e established a
hierarchy among length-scale parameters characterizirTf\ \it'process and that a

single length-scale dominates the others. ,cj
Such a demonstration has never been arhie%ek tar!

geology ' ga\\ |

seismology ! Laboratory
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L4 A
slow creep at depth seismogenic zone:
driven by tectonic ocked, and slips
plate motion loads suddenly during

L icz rthquak
seismogenie zone sarhauates Daub, E. G., and J. M. Carlson, Friction, Fracture, and Earthquakes, Ann. Rev. Cond. Matter Phys. 1, 397-418 (2010).




Stress drop scaling with seismic

moment

Estimated 10°
from point
source

models 10

Stress Drop (MPa)
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Conclusions

We need a next generation of laboratory derived
constitutive laws, which will allow us to study individual
physical processes and understanding scale dependence

Our estimates of source parameters have a large
variability and are strongly model dependent

Paradoxes might be created by ill-posed physical
questions

Are we sure that self-similarity in earthquakes is

formulated in a physically coherent way?
Earthquake size is not a constitutive length scale parameter!



Dynamic Fault Weakening

Which length-scale dominates for

corroborating self-similarity? \
Slip @7 D
Ovbrasion&
Melting “r28,(8,0,9,p.T,0,k,,L,)
Porosity & treeeeseeeeseesesion
permeability

evolution T =g; (5,5,ﬂ,p,T,w,K,wi,L3)

Thermal
Pressurization

r=f2(5,5,19,p,T,a),K,1pi,L2)

Flash
Heating

T= gl(aaéaﬁ’paTaw’Kaprl)



