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The ”Double Stochastic Fault Model” (DSFM) is proposed
in order to explain 3 common properties of earthquakes:

* (1) w? [“omega-square”] shapes of (displacement)

source spectra [Ak1 1967; Brune 1970] °

[or, equivalently, flat acceleration source spectra
[Brune 1970; Hanks&McGuire 1981]] A

* (2) two-corner (w° —w ! —w 2) source spectra f.

(typical for larger magnitudes) [Brune 1970;Gusev 1983]

* (3) frequency-dependent directivity
[e.g. Somerville 1999]

A
these three properties are well-known, 1 I
all three lack consistent theoretical explanation fc1 fcz
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log A (mm/s)

Empirical scaling laws for Fourier acceleration spectra, with flat HF part
they approximate source acceleration spectral shapes shapes
note clear two-corner spectral shapes
with gap between corners increasing with magnitude
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Period/frequency dependence of the average directivity factor

of response-spectrum acceleration RSA (RSA = peak of narrow-band-filtered acceleration)
for a set of angles between forward direction of propagation and the ray to receiver
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Key components of DSFM

1. Final (local) stress drop field Ao(x,y) on a fault :
random, fractal [Andrews 1980]

2. Rupture-front structure at high k, locally:
random, fractal, disjointed, tortuous [Gusev 2012];

3. Rupture-front propagation mode at low k, [smoothed picture]:

systematic, following the concept of running slip pulse
[Heaton 1990; Haskell
1964,1966]

4. Formation of seismic waves:
according to the fault asperity failure model
[Das&Kostrov 1983,1986; Boatwright 1988]
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The stochastic/random component #1 of the DSFM (time-independent) :
local stress drop Ao (x, y) field [4ndrews 1980]

Ao (x, y) 1s a random (assumedly 1sotropic) 2D
field, defined through its power spectrum P(k), or
through mean amplitude spectrum S(k) o« PY>(k)
[Andrews 1980] (k=[k|)

s, - S(k) is power law (S(k) o<k P) [self-affine, or
¥ broad-sense self-similar or fractal behavior]
[Andrews 1980]; and in particular:

* =1 and S(k) « k™' [narrow-sense self-similar
behavior] [Andrews 1980]

* Ao(x, y) 1s rigidly tied to final dislocation/slip
field D(x, y) [with spectrum ok 1]
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The stochastic component #2 of the DSFM (defines space-time evolution):

local rupture-front structure at high &
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[Gusev 2012]

* defines time history of rupture through
rupture front arrival time

tfr(x’ y)

* 1,(x, y) has “lacy” general appearance, with:
(a) tortuous or wiggling 1solines
(b) fragmented, with “islands” and “lakes”

* 1,(x, y) can be represented as superposition of

(1) smooth [low-k] global/““macroscopic” rupture
propagation, with well-defined rupture velocity
(traditional element); and

(2) random high-k local/*“microscopic” rupture
propagation at random directions (novel element,
creates incoherence)
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10cal rupturc-1ront structure at nign  (cont. 1)

L (X, t.(x, y): smoothed,
J N
full low-k part
k-spectrum ° only
isolines isolines
fragmented continuous

profile: yellow line:
f(x) non-monotonous
x(7) multiple-valued

profile: yellow line:
f(x) monotonous
[ Xx(1) single-valued

X, counts X, coun ts

Creating #;, (x,y)
tfr (x’ y) =R (x’ y) ) (x’ y)
R (x, y): random self-similar, spectrum o«1/k% ; 6=1-1.5;

S (x, y): smooth; deterministic term with constant velocity +
perturbation
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local rupture-front structure at high £ (cont. 2)

The cause of incoherence 1s manifested in local rupture front orientation
Color code: local direction of rupture-front normal

incoherent case (used in simulation)
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Component #3 of the DSFM (non-stochastic):
”slip-pulse” rupture propagation, with healing front [Heaton 1990]

is slipping now . . . .
unbroken, locked broken. locked detailing tlme.hlstory of rupture.
through healing front evolution

e introducing critical parameter
“relative pulse width”

C,=l;
where: L is fault length;
[ 1s slip pulse width

rupture front B B healine frunt in other terms
rise

> C, ="
I ] L) Vi
<7 »  where:

T

Lise 1S TiS€ time;
V,,, 18 (mean) rupture velocity;

typical values of Cy; :
around 0.1 [Heaton 1990]
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Component #4 of the DSFM: Using fault asperity failure theory
[Das&Kostrov 1983,1986; Boatwright1988] to describe body wave
generation

Consider failing fault spot dS at position (x, y) on a fault ¥ surrounded by a region of negligible cohesion:
infinite (Case 1) or finite, size 2R, (Case 2). Rupture front arrives to dS at time L

For far-field SH body wave, consider velocity time history on along-normal ray: ;57 Et+R/cy)

Case 1: infinite fault ™" (&,t+R/cg) = ANO(x, »)S(t —t ,(x,y))dS
T (E t+ R cg) = AJ; Ao(x,y)o(t -t ,(x,y))dS

= ™ Fault-guided waves (P, inhomogeneous 8 and R) go to infinity
Case 2 finite fault di® (E,t+ R/ cg) = G(t)* ANO(x, y)O(t - t,(x,y))dS
W (Et+R/cg)=G(t)* AJ; Ao(x,y)o(t -t ,(x,y))dS

with specific G(1)=G(z,x,y), of zero integral and of duration on the
order 2R /c,

Fault-guided waves (P,S and R) diffract/transform to regular body waves
at the boundary and die off
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Fault asperity failure theory, continued: far field body waves

s § Case 1: infinite fault with asperity dS
= infinite seismic moment
o Case 1: finite fault with asperity dS
}é _N seismic moment 1s on the order
2 dMo = 2R dF
5 where dF 1s seismic force
g dF=Ao(x, ) dS

Note that abruptness of pulse front causes
formation of accurately w’ factor to source
spectrum
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Key assumption
is made here
to justify the application
of Das-Kostrov theory:

a low-cohesion spot (of size 2R, )
can be associated

with a piece of slip-pulse strip
(of width /)

and corresponding sizes
are close one to another:

2R =1

10/19/12

is slipping now

unbroken, locked

broken, locked

rupture front 5

“—>

L=2R !
<

2 3 healing front

For each rupture front element 45,

there is an individual, corresponding low

cohesion/slipping patch
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Two possible ajustments may be needed; both ignored in
further simplified simulation

* Along-front size of slipping spot above /:
as there is more free space for alog-fault waves to propagate

e Across-width size of slipping spot below /:
as the healing front does not stand and approaches at comparable velocity
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More simplifications adopted 1n simulation:

» Stress drops instantly at the arrival of rupture A

front (slip-weakening distance / cohesion length: very small) \
: Gy(7))
* Only SH waves are considered ° .

« T. orlvary only weakly over fault area T ise

rise

* Function G(#,x,y) 1s 1dentical for all fault spots
(G(txy) = Gy(?) )
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Simulation stages

the accepted parameter values in parentheses

* (a) select source rectangle (38 x19 km),
nucleation point etc

* (b) set control parameters:
p (1.0), C,(0.06), CV,.,(0.8), 0 (1.4);

* (¢) generate sample random fields

|,—— 1, (x, ) and Ao (x, y);
J >

* (d) calculate time functions at a receiver for
the cases of infinite and finite fault

* (e) determine
normalized displacement spectrum
and associated acceleration spectrum
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Simulation: example signals and spectra

0.01 0.1 1 10 £, Hz

0.1

" (1)

I?kl)

........ -z

«—ten spectra,
averaged

— = 2 DisplSp
* Receiver position is assumed to be ?ACCSP-a\l/
positioned at the along-normal ray -2 -1
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Simulation: how spectral shapes depend on C,=l/L

Receiver position is
assumed at
along-normal ray

intermediate

T
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clear 2-corner shapes
at C,;<0.05

apprx. classical
} “omega-square” at
C;,~0.06-0.10

Example scaling:
of f{, and
of HF spectral level 4,

fir/f 2 0.2/Cy
A,JA,..~0.063/C,



Simulation: spectral shapes depending on receiver position w.r.t. mean
rupture propagation direction; note frequency-dependent directivity

/cg =0.85

vrup

M=6.7-6.9

Observed, M=6-7
Somerville et al 1997, SRL
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Conclusions

e 1. The proposed approach permits to reproduce, through
numerical modeling, the following observed features of radiated
earthquake waves:

- w2 HF spectral slope;
- 2-corner spectral shapes, and
- frequency-dependent directivity (high at LF, low at HF)

e 2. To achieve this result, “double stochastic fault model” is
proposed, that incorporates two self-similar/fractal structures,
one in spatial domain, and another in space-time domain

e 3. The presented model is kinematic and numerical. It is
however versatile and can be adapted for practical strong
motion simulation
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