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Dynamic Rupture Modeling Observational Seismology 



Ishinomaki before and after Tohoku-Oki EQ 

(Yihe@Ishinomaki,2012) 

1. Introduction    2. Dynamic Rupture Models    3. Conclusions  



2011 Tohoku-Oki Earthquake:  
Slip reaches the shallower region 

(Simons et al., 2011) 
(Yue and Lay, 2011) 

(Wei et al., 2012) 
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2011 Tohoku-Oki Earthquake:  
Slow down-dip rupture with HF bursts 

(Meng et al., 2011) (Wei et al., 2012) 
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2011 Tohoku-Oki Earthquake 

Ø  Large slip reaches the shallower region, 
and possibly extends to the trench. 

Ø  The rupture velocity is slow in the down-
dip region (~1 km/s). The up-dip rupture 
probably reaches the trench at ~ 40-80 s. 

Ø  The frequency contrast between up-dip 
and down-dip region is quite large. The 
power ratio is estimated to be ~ 10 
(Huang et al., 2012). 
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Ø Our aim is to understand the fault 
properties and explain the physics behind 
Tohoku-Oki Earthquake. 

Ø So we start by reproducing the different 
types of slip profiles, slow down-dip 
rupture and frequency contrasts. 

Ø We will compare the different fault 
properties that are implied by the different 
simulations, especially in terms of energy 
partitioning.  

Dynamic Rupture Model 
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A model that can potentially explain the 
observations with fewest assumptions.  

(τ0-τd）:  
Dynamic Stress Drop 
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Asperity Model 
Stress distributions for Model 1 
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Results: Slip 
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Results: Static Stress Drop and Overshoot 
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Results: Rupture Velocity 
1 2 3 
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Result: Frequency Contrasts 
1 2 3 
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Result: Energy Partitioning 

Stress at 11km up-dip from hypocenter 
for model 2 
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Results: Energy Partitioning 
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(e.g., Kanamori and Rivera, 2006) 
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Results: Radiation Efficiency 
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ηR = 0.37 

ηR = 0.43 

ηR = 0.53 

Models: 

≈(2×30Gpa/6Mpa)×(10-5) 
=0.1 
 
 

Observation: 



Conclusions 
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Ø  Observations are reproduced with a simple model. 

Ø  Once the hypocenter region is broken, the rupture 
can easily propagate to the shallower region even 
with negative stress drop, because of the wedge 
structure. 

Ø  The down-dip region is likely to have small 
asperities, which slow down the rupture and make 
high frequency bursts. 

Ø  The radiation efficiency from 2D model is higher 
than the observed value. Another dissipation 
energy mechanism is needed. 


