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Overview

Motivations: open questions in earthquake dynamics and
limitations of finite source inversion

Back-projection source imaging: basic principles and
recent advances

Example 2: Indian Ocean 2012, rupture branching and the
mechanics of the oceanic lithosphere

Outlook: challenges and opportunities
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Some open questions about earthquake source physics

Fault rheology: which weakening mechanisms are dominant in real faults?

Pulse vs crack ruptures: how short are earthquake rise times? (healing
mechanisms)

Earthquake source complexity: geometry and evolution of the rupture front,
broad-scale heterogeneity, variability of rupture speed, high vs low frequency
slip
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_ Rupture complexity:

multiple rupture fronts
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Array processing, examples from daily life
Goal: estimate direction of arrival of waves = locate the source

Telecommunication

Sound localization:

Our ears use the arrival time delay
of sound to pinpoint the
location of the source

This works also for a moving
source

Medicine
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Earthquake source imaging by
back-projection of teleseismic array data

Introduced by Ishii, Shearer et al (2005)

Principle:

1. Identify coherent wave arrivals across a
dense tele-seismic array

2. Use their differential arrival times to infer
source locations

3. Repeat as the earthquake unfolds, in

order to track the rupture

Source
region

Stack along moveout
curve for each time step

time=3
time=2

time=1

Seismic rays
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Seismic
array

(Hutko, 2009)

High-resolution is obtained by exploiting high-frequency waves (~1Hz)



Earthquake source imaging by
back-projection of teleseismic array data
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Introduced by Ishii, Shearer et al (2005)
Principle:

1. Identify coherent wave arrivals across a
dense tele-seismic array

2. Use their differential arrival times to infer
source locations

3. Repeat as the earthquake unfolds, in

order to track the rupture
true earth[quake location

Direction of receivers —>

High-resolution is obtained by exploiting high-frequency waves (~1Hz)
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VANCES IN BACK-PROJECTION SOURCE IMAGING

MUSIC - resolve multiple simultaneous sources
+ multitaper = resolve non-stationary signals
+ reference window = avoid swimming artifacts
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Benefits:

No a priori
assumptions on
rupture kinematics
and size

High frequency
view of the rupture
process,
complementary to
low frequency finite
fault modeling
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* Source locations are well retrieved at 1 Hz

Absolute amplitudes are less reliable (interference, incoherency)
* How to combine multiple arrays?

* How to integrate with (low freq) finite source inversion?
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/ Fault segment of slow slip event

Ito et al (2007)

Micro crack generating
deep low-frequency tremor

Earthquake Dynamic rupture simulation
time = 0.000003 year of The 2011 Tohoku earthauake.
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, e 2011 M8.6 Indian Ocean earthquake

Te cton | C Se m n g India-Australia

diffuse deformation zone,
an emerging plate boundary
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/CﬁJgate orthogonal faults

Orthogonal faulting
A confirmed by the
rupture pattern of the
3} largest (M8.2) aftershock
3 ol Mechanical implication:
3 pressure-insensitive
= strength (low apparent
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Dynamic stress analysis: compressional branching requires
e Low pressure-sensitivity (low apparent friction coefficient p) and

e Low rupture speed
(Poroelasticity helps equalizing the chances of rupture branching to either side)
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Theoretical expectations confirmed by dynamic rupture simulations
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Implications on the rheology of the oceanic lithosphere

Compressional branching requires
e Low pressure-sensitivity (low apparent friction coefficient p):

e Low rupture speed
 Fluids can help (poroelastic effect)
But why was the compressional branch preferred?

Origin of low friction and dynamic weakening?

) * Serpentinized (hydrated) upper mantle, requires deep fluid

infiltration trough fault zone channels. But serpentinization
u reaction is limited to ~25 km depth
ol N « Shear heating instability (Kelemen and Hirth, 2007) possible
/7 O b o from 40 to 60 km depth
G * Dynamic rupture through ductile region at intermediate

depth (25-40 km)

How deep can a rupture propagate?
Can rupture break through a creeping fault section?



Array of Arrays: from global to local scales

GABBA: S
Global Array of Broad Arrays Networked to Track Sources

Band Arrays, = ; an emerging concept for Earthquake
an emerging IRIS 1
initiative T

\ Lr :

Early Warning
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- Back-projection at regional scales
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tiple arrays monitoring volcanic tremors
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Each array estimates an azimuth

The azimuths from all arrays are then
combined to estimate the source
location (Metaxian et al, 2002)

ANTS concept:

Arrays Networked to Track
Sources



Horizontal seismograms 2-4 Hz

Anza arrays experiment
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Long Beach ultra-dense array
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Figure 9. Backprojection onto the plane of the Newport-Inglewood Fault Zone
(NIFZ). On the right are snap shots of the backprojection at selected times over a 600
sec period. On the left is an enlargement of the 320s snapshot display in the
approximate location of the NIFZ. The white star is the location of one of the events
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Figure 8. Event Location by Long Beach Network.
The red stars are events located by the LB Network
during the first week m May, 2011 (5% of the data). The
blue stars are from the SCSN catalog for the first 6
months of 2011. The green dots are the SCSN stations.

identified in Fig. 8.
Asaf Inbal

We cannot drill down to the seismogenic zone,
but a large and coherent array can focus
imaging on a deep fault patch

(patch size ~ wavelength <ikm for f>5Hz)



What are we hoping to learn?
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Unique insights on rupture dynamics can be obtained from
back-projection of high-frequency waves recorded by dense

arrays at teleseismic distances

The future: adapt the concept to near-field, multiple arrays,
higher frequencies

And beyond: real time = early warning

Fault




Subduction earthquakes:
off-shore acoustic arrays

MERMAID (Simmons et al) Sea glider



