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ABSTRACT: A reliable characterization of bedload transport is required to gauge the engineering and theoretical issues related to the
dynamics of sediments transport in rivers. However, while significant advances have beenmade in the development ofmonitoring tech-
niques, robust quantitative predictive relationships have proven difficult to derive. In this article, we develop a dedicated signal process-
ing technique aimed at improving the usage of impact platemeasurements formaterial transport characterization. Our set-up consists of
a piezoelectric hydrophonemounted on the bottom side of a stainless steel plate, thus acting as a ‘sediment vibration sensor’. While the
classical analysis with such systems is usually limited to rather simple procedures, such as impact counting, a large amount of useful
information is contained in the actual waveform of the impact signal, which conveys the force and the contact time that the bedload
imposes on the plate. An advanced signal processing technique called ‘first arrival atomic decomposition’ is used to improve the char-
acterization of bedload transport by analysing the amplitude and frequency attributes of each single impact. This new processing ap-
proach proves to be well suited for bedload transport monitoring using plate systems and allows us to establish a relationship
between the median grain size (D50) and the impact signal properties. This link is first observed and validated with controlled flume
experiments and then applied to continuous impact records in a small gravel-bed river during a flood event. The estimated D50 offers
a novel possibility to observe the time-varying grain size distribution of bedload transport. Copyright © 2014 John Wiley & Sons, Ltd.
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Introduction

A significant fraction of the mass transported by running water
consists of bedload resulting from channel disturbances (e.g.
erosion, flooding, sedimentation) that may affect the stability
of entire river networks, from mountain systems to low-altitude
streams (Lord et al., 2009). Material accumulation can, for in-
stance, cause damages to weirs, barrages or sluices (Ergenzinger
and Schmidt, 1993; Badoux et al., 2014). Traditional bedload
measuring devices such as sediment samplers have been suc-
cessfully used for many decades to investigate mass transport
kinetics (Reid et al., 1980; Laronne and Reid, 1993; Habersack
and Laronne, 2001). However, the collection of sampled
bedload data is often too expensive and laborious for practical
purposes, encouraging researchers to look for relations estimat-
ing bedload transport rates (Gomez, 2006). Yet most of these
empirical relations provide unsatisfactory results in gravel-bed
rivers (Gray et al., 2010) as well as in mountain rivers (Yager
et al., 2007). In an attempt to overcome these limitations, new
monitoring techniques based on the analysis of the acoustic fin-
gerprint of bedload motion using passive or active sensors have
been recently developed (see Gray et al., 2010, for a complete
review). Robust scaling relationships connecting acoustic mea-
surement parameters to bedload transport rates would be of
high interest in terms of monitoring capabilities, since these
would in principal allow for a quantitative characterization of
bedload transport in near-real time.

In the last decade, vibrationmeasurements performedwith plate
or pipe geophone/hydrophone systems have been of growing in-
terest for coarse materials (>2 mm) transport monitoring (Hegg
and Rickenmann, 1998; Mizuyama et al., 2010; Rickenmann
et al., 2012). Recent developments on different devices and
methods for monitoring bedload movement (e.g. horizontal pipe
system, impact plate sensors for different scales or river cross sec-
tions) are described in Gray et al. (2010). These investigations
mainly focused on the recording of impulses produced by the
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moving bedload, and the overall conclusions are that (1) gravel
material can be detected and (2) the beginning and end of bedload
movement can be determined acoustically. Bogen et al. (2003)
and Rickenmann et al. (2013) present similar results from a range
of case studies in catchments around the world.
Belleudy et al. (2010) and Barton et al. (2010) introduce pas-

sive monitoring approaches, where a hydrophone is placed
near the riverbed to record the acoustic wave field resulting
from water flow and bedload transport. Promising results were
achieved regarding the detection of coarse sediments motion
(>8 mm), but the technique proved to be highly sensitive to
contamination by surrounding noise sources, rendering it un-
suitable when the impact energies are too small. In another re-
cent paper, Turowski and Rickenmann (2011) analyse the
relationships between bedload transport rates, water discharge,
and impact plate sensor response. They conclude that impact
measurements alone are in most cases unsuitable to develop a
rating curve for bedload transport rates. Nevertheless, relevant
sensors such as the Swiss plate geophone can be used to esti-
mate bedload volumes of individual events; the majority of
these experiments focused on torrent channels in mountain en-
vironments (Rickenmann and McArdell, 2007; Turowski et al.,
2011; Rickenmann et al., 2012, 2014). The same research team
concludes that the results from these impact studies are in agree-
ment with bedload volumes estimated from the survey of mate-
rial stored in corresponding retention basins or captured with
bedload basket traps (Rickenmann et al., 2014). More recently,
Turowski et al. (2013) made a first attempt to evaluate the en-
ergy delivered to the streambed by moving bedload using the
same plate system, and Burtin et al. (2014) used similar impact
measurements to constrain the potential contribution of
bedload transport in the Illgraben catchment (Switzerland) to
the seismic energy recorded with seismometers located nearby.
In contrast to these highly energetic cases, we aim to answer

the question whether the use of impact plate measurements in
streams in low mountain ranges (several hundred metres high)
with comparatively low discharge and little bedload can also im-
prove the characterization of material transport. The present
study consists in the assessment of a new processing methodol-
ogy of impact measurements using a hydrophone-based plate
system, with experiments performed in two laboratory flumes
and one field site near Trier (Germany). This type of set-up was
first developed by Krein et al. (2008) and used to detect and char-
acterize bedload movement in laboratory flume experiments.
Since this article is devoted to the development and validation
of a novel processing approach through controlled laboratory
experiments, we provide an extensive description of the impact
signal processing and the results acquired with the flume exper-
iments. Awell-defined relationship is found between themedian
grain size (D50) and impact signal attributes (frequency, ampli-
tude) in agreement with the Hertz contact theory. Since this rela-
tion remains valid as long as the plate set-up and the grain size
range (granular to pebble gravels) are unchanged, we show that
the different impact signatures in a gravel-bed stream during a
flood event are well explained by significant temporal changes
of D50 according to laboratory observations.
Experimental Set-up

Impact plate system using a piezoelectric
hydrophone

The impact plate system consists of a piezoelectric hydrophone
mounted on the bottom side of a stainless steel plate (50 cm × 50
cm × 3 mm), detecting each single impact on the plate. The
Copyright © 2014 John Wiley & Sons, Ltd.
hydrophone and plate are acoustically isolated from the subjacent
fixing by rubber vibration cushions. The hydrophone is designed in
such a way that it only records the mechanical friction on the sur-
face of the metal plate below which it is fixed by screws. The ad-
vantage of this setup is that acoustic noise resulting from the
water turbulence in the river is efficiently excluded. The ITC-
4001 hydrophone is a shallow water transducer containing a flex-
ural disc transducer. Its recording range lies between 0.1 and 20
kHz with a stable frequency response. This sensor is thus able to
record acoustic signals in the sonic frequency range (kilohertz)
with high signal-to-noise ratio (Krein et al., 2008). The impact-
generated vibrations in the plate are recorded with a portable data
recorder (ZoomH4Nwave-recorder), converted into digital signal
with 16-bit resolution (.wav format) with absolute values varying
between zero and one, high sampling rate (96 kHz), and stored
on 32 GB SD-Cards.
Laboratory flume experiments

Two laboratory flumes were used in this study. The first one is a
small plexi-glass flume located at University of Trier, Germany,
with a length of 3 m and a width of 0.27 m. In addition, it is tilt-
able from 0° to 14° (Figure 1a). Although its size is not specifi-
cally dedicated to gravel transport experiments, such an
apparatus can be useful to observe and record the various im-
pact types that should occur in real conditions. A tank below
the flume acts as a reservoir for the water circuit and sediment
trap. An adjusted hydrophone plate is mounted at the end of
the flume. The plate was downsized to half its original width
to fit into the flume, which could in principle lead to a reduction
of the variability of impact locations on the plate. The length of
the plate is however preserved, thus still allowing for impacts to
occur roughly up to the maximum distance from the sensor lo-
cation, similar to the field set-up. We assume that this
downsizing does not significantly affect the recorded vibration
signal because the bending stiffness of the plate, fixed at its
edges, should not be strongly modified in the Trier experiment.
The influence of pump noise, which causes vibrations along the
flume, was dampened by fixing silicon to the edges of the plate.

The laboratory set-up described here is, of course, a signifi-
cant simplification of the expected situation in the field and,
for this reason, a second, more realistic flume experiment was
carried out at the University of Trondheim, Norway (Figure 1b).
This experiment uses a significantly larger flume, with a length
of 12.5 m and a width of 1 m, allowing for the same installation
of the impact plate system as in the field (50 cm × 50 cm × 3
mm). For technical reasons, the slope was set to a fixed position
(2°), and an efficient pumping system generated discharge levels
up to 80 l s�1 for the considered experiments. The main differ-
ence with the previous flume is that it allows for realistic trans-
port of bedload sediments on an armoured bed (D16 = 1.15
mm, D84 = 28 mm) constituted by sand and gravels (Figure 1b,
b1). Material moving over the steel plate is trapped in a basket,
then weighed and sieved for comparison with the impact data.
Field experiment

Impact measurements were also performed at a field site with
the same apparatus as the one installed in the Trondheim ex-
periment. In order to ensure highest possible consistency be-
tween the laboratory and the field experiments, the bedload
material used in the flume experiment in Trier originates from
this field site, and the sediments in the Trondheim experiment
have similar density and shape. The shapes of the stones are
randomly round, flat or angular, implying that this study is not
Earth Surf. Process. Landforms, (2015)



Figure 1. Pictures of (a) the Trier flume, (b) the Trondheim flume (dashed line) and (c) the Olewiger stream. Letter P corresponds to the impact plate.
This figure is available in colour online at wileyonlinelibrary.com/journal/espl

A SIGNAL PROCESSING TECHNIQUE FOR DERIVING GRAIN SIZE OF BEDLOAD
restricted to a certain range of shapes. The field site is located in
a small gravel-bed river of the low-mountain range (Olewiger
brook, Trier, Germany). The river cross-section is rectangular
and its width reaches around 3 m in the considered portion
(Figure 1c). The water level varies from one to a few dozen
centimetres, depending on the flow intensity (discharge lower
than 5 m3 s�1 during peak flow conditions). The mean channel
slope is about 1.5% with a typical riffle pool sequence. Devo-
nian shales with quartz and diabase veins dominate the geol-
ogy, and the corresponding surface riverbed material is
characterised by a D50 of 8.7 ± 3.9 mm and a D90 of 32.9 ±
9.6 mm. Detailed information about streambed morphology
and sediment characteristics is given by Krein and Schorer
(2000) or Petticrew et al. (2007). The contact plate with the hy-
drophone has been installed in the riverbed such that its upper
surface is level with the sediment surface. The hydrophone is
located in a cavity below the plate and thus not in contact with
the riverbed. Start and stop trigger signals are controlled by a
level sensor with magnetic float reacting to the water level.
The recording procedure is started and continued as long as
the pre-defined threshold level is constantly exceeded.
Impact Signal Processing

Analogy of impact measurements with the Hertz
contact theory

In view of the high signal-to-noise ratio of the recorded impact
signals, we aim to improve the classical ‘impact counting’ pro-
cessing procedure (Rickenmann et al., 2014) in order to derive
more information on time-varying bedload properties. Accord-
ing to the Hertz contact theory and acoustic emission method
literature (Tsunoda et al., 1986; Buttle and Scruby, 1990; Uher
and Benes, 2012), grain size can be estimated from acoustic
measurements. Hertz’s theory allows for the calculation of the
force time history that a round ball imposes on an elastic plate
after being dropped at normal incidence (Johnson, 1985). The
interaction of natural gravel particles with the metal plate, in-
cluding different types of motion (saltation, rolling, sliding)
and shapes (round, flat), is of course much more complex than
in the case of a vertically impacting sphere. As noted by Krein
et al. (2008), who used a similar apparatus, the shape of the
Copyright © 2014 John Wiley & Sons, Ltd.
grains is decisive for the motion of the stones and thus also
for the interaction with the contact plate. Stones with equally
long axes (i.e. compact ones) have the lowest variability in their
motions and produced similar signal patterns. In contrast, flat
stones offer variable options to the attacking forces and may
pass over the contact plate in very different modes, generating
changing acoustic waveform (i.e. amplitude, frequency).

Nonetheless, a certain analogy with Hertzian contact might
still be envisaged since the force pulse is highly dependent on
the sphere size and mass. The impact signal generated by
coarse or fine sediments, corresponding to the propagation of
the flexural wave mode in the plate, should, therefore, have dif-
ferent statistical signatures despite the high variability of grain
shapes, impact angles and velocity.

When a sediment particle impacts on the plate, the ampli-
tude and frequency of the first arrival waveform are the two fun-
damental properties related to the force that the bedload
imposes on the plate and the contact time defined as the dura-
tion over which the applied impact force is non-zero (Johnson,
1985). The amplitude and frequency of the raw data are di-
rectly interpretable as long as the measurement frequency lies
in the linear frequency response range of the sensor and ampli-
tude linearity over the entire full-scale range is ensured.
Concerning the frequency attribute, we can associate the im-
pact frequency to the mean frequency fmean instead of the dom-
inant frequency to take into account the overall shape of the
impact frequency spectrum:

f mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫þ∞
�∞ U fð Þj j2 f 2 df

∫þ∞
�∞ U fð Þj j2 df

vuut ;

where U(f ) is the Fourier spectrum and f the frequency.
If material properties are disregarded (i.e. assuming identical

bulk properties among stones), the following proportionality re-
lations may be assumed:

f mean ∝ R�α1: V β1

Amax ∝ Rα2:V β2

(

where R is the mean radius of the particle, V the impact veloc-
ity, Amax the maximum signal magnitude (i.e. absolute value of
amplitude), and α1, β1, α2 and β2 are real exponents. In some
Earth Surf. Process. Landforms, (2015)
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acoustic emission studies (Uher and Benes, 2012; Pecorari,
2013), the values of these exponents have been estimated
since experimental conditions were designed to fit the rather
restrictive constraints under which Hertz contact theory can
be considered as a rigorous theoretical framework. However,
this theory is of course a strong simplification (e.g. elastic
contact, infinite plate, normal incidence, round ball) regarding
real-life impact-plate field measurements and our experimental
conditions (e.g. varying shapes, motions and impact velocity/
angle, uncertainty about the impact location on the plate).
Therefore, we emphasize at this point that in this study, this
simple model is not considered as a rigorous theoretical frame-
work used to derive an exact formulation of the impact force,
the time of contact, and consequently the frequency and am-
plitude attributes. Nevertheless, we can reasonably assume
that at a given impact velocity, coarser and finer sediments will
generate low frequency–high amplitude and high frequency–
low amplitude waveforms, respectively. For both attributes, a
shift towards higher frequencies and amplitudes should occur
with increasing impact velocity. For the sake of notation
simplicity, Amax and fmean are now referred to the variables
A and F, respectively. As stated earlier, the aim of the fol-
lowing parts is not the development of an exact theoretical
and mathematical framework, but the study represents an
empirical and statistics-based approach in order to quantify
bedload grain size from the statistical distribution of -
amplitude/frequency attribute pairs from impact measurements.
Time–frequency analysis of single stone dropping test

We performed a simple stone-dropping test to validate our
choice for studying the relationship between amplitude–
frequency (A–F) attributes and grain size. The possible drift
due to changing impact velocity has not been taken into ac-
count here because its effect will be considered with the flume
experiments presented in the Results and Discussion sections.
For a drop height nearly constant (3–4 cm), we study the impact
of two different grains on the steel plate at three different loca-
tions: 20 cm, 10 cm and 0 cm from the sensor located at the
centre of the plate. The sediments used are a large and a small
round gravel grain of 90 and 6 g, respectively. A time–
frequency analysis is performed to examine the spectral proper-
ties of the different impact signals.
In the framework of time–frequency analysis, the Short

Time Fourier Transform (STFT) is the logical continuation of
Fourier analysis for non-stationary signals. The STFT is ob-
tained through calculation of the Fourier transform of succes-
sive windowed portions of the signal, resulting in a two-
dimensional time–frequency representation, often-called
spectrogram (Oppenheim et al., 1999). The continuous wave-
let transform (CWT), which was introduced in the field of
seismic processing (Goupillaud et al., 1984), has a more flex-
ible time–frequency resolution than the STFT and overcomes
some of its limitations resulting from the fixed windowing
function. The CWT is the integral over time of the signal x
(t) multiplied by scaled and shifted versions of a function ψ
called the mother wavelet (Mallat, 1999). The CWT results
in wavelet coefficients C(a,b) depending on a scale, a and
a translation factor, b

C a;bð Þ ¼ 1ffiffiffi
a

p ∫þ∞
�∞x tð Þ ψ t � b

a

� �
dt ;

where ψ is the complex conjugate of the analysing wavelet
function. The position b is generally associated with the
Copyright © 2014 John Wiley & Sons, Ltd.
sampling interval Δ. These wavelet coefficients constitute a
time-scale map (scalogram) that can be converted into a
time–frequency representation C(t, fa) by assigning a pseudo-
frequency fa to the scale a using the relationship fa= fc/(a.Δ),
where fc is the central frequency of the mother wavelet. As
the mother wavelet, we use the complex Morlet wavelet,
which is widely used in geophysics (Torrence and Compo,
1998):

ψ tð Þ ¼ 1

π1=4
eiω0 t � e�ω0

2=2
� �

e�t2=2;

where ω0 (=2πf0) is the central angular frequency of the
mother wavelet. The Morlet wavelet is a complex sinusoid

confined within a Gaussian envelope e�t2=2. In order to sat-
isfy some mathematical criteria to be considered as a wave-
let, the second term in brackets corrects the complex
Morlet wavelet for non-zero mean and becomes negligible
for values of central frequency, ω0, higher than the standard

limit value, π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln2

p
(Addison, 2002). If ω0 decreases, the

time resolution increases whereas the frequency resolution
decreases. An increase in spectral resolution can be
achieved by increasing ω0 but the time localization will
be unsuitable for time picking (i.e. the transform will be
more spectral than temporal). In the following, the CWT

will be computed using the standard value ω0 ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2= ln2

p
because it offers the best compromise between frequency
and time resolution.

Figure 2 represents the signals recorded for the different
impacts and the corresponding CWT time–frequency repre-
sentation. First, the amplitude analysis in the time domain
(Figures 2a and 2e for small and large grains, respectively)
leads to the conclusion that the amplitude varies a lot with
the impact location, but the magnitude for the bigger grain
is significantly higher (twice or more). Therefore, the ampli-
tude appears to be a valuable criterion, although insufficient
on its own, to differentiate large from small grains. Time–
frequency magnitude maps of these signals are depicted in
Figures 2b–2d and 2f–2h for the small grain and the big grain
cases, respectively. In the vicinity of the first arrival, the 90 g
grain has a lower frequency signature than the 6 g sediment
for all offsets. Nevertheless, the detection of the first arrival is
difficult for large distances (10 and 20 cm) because the first
event is of low amplitude and mixed with later arrivals
resulting from rebounds of the grain on the plate and wave
propagation effects in the plate, particularly from boundary
reflections. This bad detection in the time–frequency plane
is partly due to the chosen mother wavelet. Indeed, some
other wavelets, such as the ‘Mexican hat’ wavelet (also
called Ricker) or Morlet wavelet with lower ω0 values, have
fewer oscillations than the standard Morlet wavelet, allowing
for a better temporal localization of singular short waveforms
(Addison, 2002). However, a high number of vanishing mo-
ments (i.e. oscillations) constituting the analysing wavelet
function are needed to obtain a meaningful CWT magnitude
spectrum, comparable to the Fourier spectrum (Perrier et al.,
1995). In the family of signal decomposition techniques in-
cluding STFT and CWT, dictionary-based methods (Mallat
and Zhang, 1993) are better able to deal with complex wave-
forms such as the ones observed here for the overall impact
signal, and are, therefore, expected to be more suitable to re-
trieve the A–F information of the first arrival waveform. In the
following part, we describe our dedicated processing algo-
rithm called ‘first arrival atomic decomposition’ (FAAD),
which was developed with a dictionary of chirplet functions
(Bardainne et al., 2006).
Earth Surf. Process. Landforms, (2015)



Figure 2. Recorded signal of 96 kHz sampling rate and its corresponding time–frequency transform (CWT using a standard Morlet wavelet) after
dropping from a constant height (a) a 6 g gravel at (b) 0 cm, (c) 10 cm, (d) 20 cm from the sensor location and (e) a 90 g gravel at (f) 0 cm, (g) 10
cm, (h) 20 cm from the sensor location. The colour scale corresponds to the normalized magnitude of wavelet coefficients, red being the highest
and blue-white the lowest values. Note the difficulty to detect a clear first arrival at large distance from the sensor. (See online version for the refer-
ences to colour in this figure). This figure is available in colour online at wileyonlinelibrary.com/journal/espl

A SIGNAL PROCESSING TECHNIQUE FOR DERIVING GRAIN SIZE OF BEDLOAD
The first arrival atomic decomposition (FAAD)

Adaptive signal decomposition techniques represent a highly
flexible tool to isolate events from mixed waves, and the
Ck ak ; t k ; f k ; qkð Þ tð Þ ¼ akj j � 1
2
g

tk � t
ak

� �
exp i 2πf k tk � tð Þ þ qk

2
t k � tð Þ2

� �h i
:

matching pursuit algorithm is commonly used in this field
(Mallat and Zhang, 1993). This algorithm searches for the
maximum correlation between the signal to be analysed
and a dictionary of elementary functions called atoms. Once
the best atom is found, it is extracted from the original signal
and a residual is obtained. This procedure is repeated on the
residual signal until a stopping criterion is reached (often
related to the maximum signal energy to be recovered). It is
then possible to rebuild the original signal as the sum of se-
lected atoms weighted by real or complex coefficients. The
processing that we developed is an adaptation of this algo-
rithm since we want to perform one iteration only, in order
to find one atom describing the first arrival as accurately as
possible.
The choice of the atoms family constituting the dictionary

is of primary importance. For instance, many wavelet func-
tions such as those used for the CWT could be combined
in the same dictionary. However, these two-dimensional
functions are insufficient to correctly describe the complex
Copyright © 2014 John Wiley & Sons, Ltd.
first arrival in one single iteration (i.e. one atom), and more
elaborated atoms are needed. The chirplet developed by
Mann and Haykin (1995) is well suited to our case and de-
fined by:
The chirp atom Ck is constructed from the Gaussian function g
and described by four parameters: its central frequency, fk and
scale, ak (fk and ak are independent, in contrast to the wavelet
formulation), time, tk and chirp rate, qk. This last attribute de-
scribing the modulation in frequency is essential since we can
expect to observe some dispersive behaviours for the wave
mode propagating in the plate. This modulation is, however,
considered to be linear and the definition of this four-
dimensional chirplet might thus not always be optimal. In the
context of seismology and induced-seismicity studies,
Bardainne et al. (2006) have, therefore, proposed a generaliza-
tion of the chirp atom to higher dimensions. By adding a non-
linear modulation and two additional parameters modifying
the symmetric Gaussian envelope, they were able to describe
the overall complexity of noisy seismic signals. We choose this
high dimensional atom dictionary for our processing because
the structure of our recorded signals is very similar to typical sig-
nals present in seismic measurements. Since the formulation of
this seven-dimensional chirplet function is complex and
Earth Surf. Process. Landforms, (2015)
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beyond the scope of this paper, we refer the interested reader to
the article of Bardainne et al. (2006) for a complete description.
Enlarging the atoms dictionary to seven dimensions is not

straightforward and affects the computation time. We use the
optimization procedures proposed by Gribonval (2001) and
Bardainne et al. (2006) to speed up the computation. This opti-
mization mainly rests on the hierarchical finding of the best
chirp atom by searching for the maximum correlation in the Ga-
bor atoms dictionary (sub-dictionary of the chirplet dictionary)
described by only three free parameters, namely time, fre-
quency and scale (see aforementioned references for more de-
tails). Finally, the FAAD algorithm provides an optimal
reconstruction of the selected waveform in terms of chirp atom
characterized by seven parameters that are a generalization of
two-dimensional information obtained by wavelet transform in
the time–frequency domain. To summarize, this complete pro-
cessing technique, developed in the MATLAB environment,
consists in two main steps illustrated in Figure 3:

• First arrival picking of each coherent impact in the time do-
main using a detection method similar to the STA/LTA (short-
term average to long-term average) technique in seismology
(e.g. Coppens, 1985; Earle and Shearer, 1994), which per-
mits differentiating a signal onset within a noisy time history.
The time corresponding to a high value of the STA/LTA ratio
is considered to be a detection when the STA/LTA exceeds a
user-defined threshold.

• Full characterization of the first waveform based on the
chirplet atomic decomposition to get an accurate estimation
of the A–F attributes.

The first detection step is an important task that affects the reli-
ability of the second one. Indeed, the efficiency of our algo-
rithm depends strongly on its capacity to detect low as well
as high amplitude impacts in the same record. Therefore, each
record is analysed successively through five STA/LTA amplitude
ranges, from the lowest to the highest threshold. Once one im-
pact is detected in a given amplitude range, the corresponding
Figure 3. Illustration of the processing technique using synthetic signals. (a
three different summed and overlapped chirp atoms characterized by differen
rithm scans the beginning of the coherent signal to find the best chirp atom (
line and the solid blue line, respectively, and the dashed red line corresponds
5% additive noise constituted by (e) five different summed and overlapped c
rectly rebuild the waveform of the first arrival and then to retrieve its amplitu
confidence of the reconstruction procedure (recovered energy of the rebuilt
vertical solid red lines. This figure is available in colour online at wileyonlin

Copyright © 2014 John Wiley & Sons, Ltd.
signal portion is removed from the scanning procedure for the
other amplitude ranges to avoid a possible redundancy of de-
tected impacts.

We set a maximum number of 60 impacts per minute and per
amplitude range with a minimum spacing between impacts
equal to one-tenth of a second. These setting parameters were
identically chosen for laboratory and field measurements to en-
sure a reliable comparison between them. Enlarging these two
limit criteria increases the computation time and potentially
causes false first arrivals detections. The computation time is
not really critical for the laboratory experiments because the
analysed time intervals are typically only several minutes long,
ranging from around 30 seconds for the shortest experiment
(Trier) to 20 minutes for the longest one (Trondheim). However,
for a natural flood event spreading over several hours or days,
considering a maximum of 300 impacts per minute for the
overall amplitude range is an acceptable limit to retrieve a
well-defined acoustic signature. The processing of the whole
flood event presented in this study required an important com-
putational effort since the ratio between the computation time
and the length of the entire record (almost 22 hours) is around
three. A better ratio, lower than one, was achieved by
parallelizing the code. Using a multi-core processor, the sim-
plest way is to break up a long record into several shorter time
series and analyse each part simultaneously by assigning one
calculation (i.e. one part) to one single processor core.
Results

‘Single grain class’ experiments

The first laboratory experiment was performed in the Trier
flume with sieved and separated grain classes. The goal of these
measurements is to obtain a reference A–F signature for each
selected grain class. After preliminary tests, we conclude that
sediments below 2 mm are not satisfactorily detected because
they generate a random high frequency noise of low amplitude
) Synthetic generated signal of 96 kHz sampling rate constituted by (b)
t amplitude, central frequency and frequency modulation. (c) Our algo-
i.e. best correlation). Original signal and first atom are the dotted black
to the rebuilt first waveform. (d) Second example of synthetic signal with
hirp atoms, (f) first arrival reconstruction. This technique is able to cor-
de and frequency components. For both examples presented here, the
waveform) is over 97% of the selected signal portion indicated by the
elibrary.com/journal/espl
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rather than detectable impulsive signals. Hence four classes of
gravels are considered: class 1 from 2 to 8 mm, class 2 from 8 to
16 mm, class 3 from 16 to 31.5 mm and class 4 from 31.5 to 63
mm. The effect of impact velocity has to be gauged in order to
determine the overall impact signature for various flow intensi-
ties. By performing two rotating flume experiments, Attal and
Lave (2009) observed a linear relationship between the mean
fluid velocity and the mean gravel velocity for similar ranges
of flow velocities and grain sizes. By varying the slope of the
flume from 2° to 10°, we consequently change the flow and
gravel velocities as well as the impact velocity by favouring
the saltation process as opposed to rolling motion. Using the
Manning formula for open rectangular channel to convert the
slope information to flow velocity (Chanson, 2004), we define
the range of conditions replicated in the experiments for impact
measurements in the well-known Hjulström diagram (Figure 4).
The grey rectangle in Figure 4 is bounded by grain size and
flow velocity limits where the laboratory impact measurements
are assumed to be representative of such flow conditions,
mostly characterized by transport and erosion processes.
Figure 4. Range of conditions replicated in the experiments (grey
rectangle) for impact measurements in the Hjulström diagram. The
slope corresponding to flow velocity calculated using the Manning for-
mula is also indicated: V = n–1 R2/3 S1/2, where n is the Manning coef-
ficient (≈0.01 for PVC with smooth inner walls), R is the hydraulic
radius of the flow cross-section (in metres) and S corresponds to the
slope of the channel bottom (in m m�1).

a) b)

Figure 5. Occurrence and mean confidence of detected impacts analysed w
class 1, (b) class 2, (c) class 3, and (d) class 4. For all plots, A–F attributes are
(class 1) values. This figure is available in colour online at wileyonlinelibrary

Copyright © 2014 John Wiley & Sons, Ltd.
One kilogram of each grain class is flushed twice for the
three slopes, except for the lowest slope and class 4 because
the flow was unable to move the coarsest sediments. This ob-
servation confirms the predicted immobility of such coarse ma-
terials with the slope set to 2° (lower right corner of the grey
rectangle in Figure 4). In Figure 5, the occurrence and the mean
confidence of detected impacts are represented in normalized
A–F maps. The confidence value, corresponding to the quality
of the reconstruction of the first arrival obtained with the FAAD
algorithm, is high for most of the retrieved impacts. More than
80% of the total number of rebuilt first arrival waveforms (n =
1799) could recover at least 75% of the original signal energy
(87% on average). The main information in this figure is the dif-
ferent patterns highlighted on the occurrence maps between
the four sediments classes. From class 1 to 4, the impact signa-
ture shifts from high frequency–low amplitude to low
frequency–high amplitude values. This is clear evidence that
the analogy with the Hertz contact theory is relevant. Further-
more, these results indirectly indicate that the effect of impact
velocity is sufficiently small in the considered range to observe
the predominant effect of grain size. However, there is an over-
lap between the different frequency and amplitude bands due
to the high variability of impact types, grain shapes and impact
velocities, which could mask the grain size information in the
case of avalanches of mixed grain sizes. Therefore, we test this
approach in the following part by analysing the A–F distribution
of ‘mixed grain classes’ experiments. For the sake of notation
simplicity, the ‘single grain class’ experiments are now referred
to as ‘reference experiments’.
‘Mixed grain classes’ experiments

Ten sediment transport experiments are performed with the
Trondheim flume. For each experiment, the weight and D50

of materials collected in the basket are estimated. The weight
of sampled sediments varies from around 2 to 16 kg, with D50

= 2–14 mm and D90 = 5–35 mm. Water flow depth is unfortu-
nately unknown but we can fairly assume that flow velocity lies
within the same range as for the reference Trier experiments.
Motion of very coarse grains (>30 mm) was restricted due to
the low slope. Therefore, we used once again the Trier flume
in order to record avalanches of grains with large D50. Two to
three repeated flush experiments of sieved materials with iden-
tical median grain size were performed using the largest slope
(10°). Four different D50 (around 18 to 35 mm) were
c) d)

ith the FAAD processing and represented in normalized A–Fmap for (a)
normalized by the same maximum amplitude (class 4) and frequency
.com/journal/espl
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investigated. The information relative to these two flume exper-
iments is provided in Table I.
Figure 6 shows the results extracted from the analysis of the

aforementioned experiments using the FAAD procedure. For
comparison with the reference experiments, frequency and
amplitude positions of each recorded impact processed in
the reference records are depicted as small markers with dull
colours and rectangles corresponding to the 10th to the 90th
percentiles boundaries. It is interesting to note that the median
A–F signatures for experiments with sediment mixtures corre-
sponding to small D50 and consequently composed to a large
proportion of small grains (<8 mm) have a similar position in
the A–F map as class 1 impacts in the reference experiments
(blue rectangle). A shift toward class 4 impacts (red rectangle)
is observed for experiments with large D50 and containing a
smaller proportion of small grains. Therefore a statistical anal-
ysis (median) of ‘mixed grain classes’ impact recordings in the
A–F map allows for a correct retrieval of the median grain size
of the sediments moving over the plate for D50 values ranging
from 2 to 35 mm.
The following observations also support the robustness of our

approach:

• For the Trondheim experiments, notable proportions (6–
19%) of sediments smaller than 2 mm were also col-
lected in the basket. This implies that the A–F median
is a reliable proxy of the median grain size even if sand
fraction constitutes a significant part of the bedload
transport.

• The average sediment transport rate (i.e. total weight of
transported sediments per metre and per total time of impact
signal recording) is significantly different between each
single experiment, notably between Trier and Trondheim
(Table I). However, the statistical approach leading to the
estimate of the median value is insensitive to this highly
variable parameter.
Table I. Main characteristics (slope, discharge, D50, weight and mean tran

a) b)

Figure 6. The A–F signatures for reference (‘single-grain classes’) and ‘mixed
angles and small markers with dull colours correspond to class 1 (blue box an
4 (red box and round marker). Classes 2 and 3 are combined into one single
angles correspond to the 10th and 90th percentiles boundaries of the statistica
round markers represent the median values of A–F attributes filled with a colo
(See online version for the references to colour in this figure). This figure is a

Copyright © 2014 John Wiley & Sons, Ltd.
• The results presented in Figure 6 are the combination of
three different experiments using two different set-ups and
channel properties. This appears to confirm that the A–F sig-
natures are only dependent on the plate set-up. Therefore,
we establish in the next part a calibration relationship be-
tween A–F attributes and D50 to be applied to impact mea-
surements during a flood event in the Olewiger gravel-bed
stream.
Calibration curve between D50 and acoustic
attributes

In view of the results obtained so far, it seems relevant to look
for a calibration curve between D50 and the acoustic attributes
because grain size has a clear effect on amplitude (which in-
creases with increasing grain size) and frequency (which de-
creases with increasing grain size) (Figures 5 and 6). In light
of these observations, we propose deriving a general power
law relation such as:

log D50ð Þ ¼ C1log median Aa=Fb
� �	 
þ C2 ;

where a and b are real exponents. As discussed previously,
the experimental relationship between D50 and acoustic attri-
butes is constrained by specific ranges of flow velocity and
grain size (Figure 4). Hence, this calibration model is built
under the reasonable assumption that variations of impact ve-
locity are weak enough to avoid any substantial deviations
from this linear dependency. For the sake of notation simplic-
ity, the median calculation for all reference and ‘mixed grain
classes’ experiments is implicit in the following analysis. We
perform a grid-search calculation of best fitting curves (in
the least-square sense) for any a–b satisfying this relation with
a fixed value of slope C1. Note that it is always possible with
the above relation to find another couple a–b that leads to a
sport rate) of the ‘mixed grain classes’ experiments

grain classes’ experiments (Table I). For the reference experiments, rect-
d square marker), class 2 + 3 (green box and diamond marker) and class
intermediate class (8–31.5 mm) for a better visualization. The three rect-
l distributions in the A–Fmap for the reference grain classes. The bigger
ur dependent on (a) the value of D50 and (b) proportion of class 1 grains.
vailable in colour online at wileyonlinelibrary.com/journal/espl
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different slope of the regression line in log-log space, but has
the same quality of fit; for this reason, we need to fix one of
the three unknowns a, b and C1, and we thus search for the
optimal couple a–b leading to a slope equal to unity in the
relation. Figure 7a summarizes this procedure where the stan-
dard coefficient of determination R2 is used as quality index.
The highest R2 value (=0.949) is obtained for a≈ 0.45b for
any slope value, thus conveying the inter-correlation between
the two variables A and F (see also Figures 5 and 6). There-
fore, we choose this best couple a–b leading to C1 = 1 for
the following final calibration curve (Figure 7b):

D50 ¼ 5:0595:104 A0:39=F0:86 ;

Errors bars in Figure 7b correspond to the first and third quar-
tiles of the A–F ratio. The largest error bars obtained for the
Trondheim experiment can be explained by the use of a
wider plate, hence a larger variability of impact location.
However, as stated earlier, the median calculation for each
experiment appears to be a robust statistical parameter,
allowing a reliable regression line to be defined throughout
the range D50 = [1–70] mm. Note as well that the comple-
mentarity between the different experiments is quite
remarkable.
Defining a fair uncertainty is a key point for further quantita-

tive purposes. Our dataset is well scattered along a wide D50

range but the total of 18 measurements might be considered
rather small to establish classical confidence intervals. Hence,
we compute the 95% prediction interval taking also into ac-
count the standard deviation of a future observation, which
leads to additional uncertainty. This predictive error, always
wider than the standard confidence interval, is a suitable prop-
erty to develop a calibration model. It allows defining a range
of D50 values for which we expect that, for a given A–F ratio,
the next estimated D50 lies within this interval with 95% prob-
ability. The total error of D50 derived from this prediction inter-
val has a parabolic shape, well approximated by a second-
order polynomial equation expressed in Figure 7b. These errors
are, not surprisingly, substantial (±60%) given the observed
scattering of individual A–F pair estimates. This implies that es-
timations of large D50 will be less certain than estimations of
small ones, but the essential information of sharp variations in
transported grain size can be well detected.
Figure 7. (a) R2 (colour scale) of log(D50) =C1 log[median(Aa/Fb)] +C2, as a
calibration curve (solid black line) between the median grain size (D50) and
black lines and the corresponding total error ETot for D50 is expressed in the i
figure is available in colour online at wileyonlinelibrary.com/journal/espl

Copyright © 2014 John Wiley & Sons, Ltd.
Flood event in a small gravel-bed river

In a final step, we apply this relationship to recorded impacts
during a summer flood event (20 June 2013) in the Olewiger
brook. The final results are presented in Figure 8. This typical flash
flood event is characterized by a sudden strong increase from 200
to 380 minutes after the onset of the flood event, followed by a
longer falling limb of duration 450 minutes and a second weaker
event (Figure 8a). Estimated D50 is represented with correspond-
ing uncertainties for each five minutes interval (identical to the
sampling rate of water level). The median is calculated when at
least 50 impacts are detected to ensure a proper statistical calcu-
lation. The variations of D50 are well correlated with the
hydrograph and show significant increases of median grain size
when the water level exceeds a certain threshold. Strong in-
creases of D50 are notably observed for the first peak flow at
200 minutes, for the second one at 360 to 380 minutes, and to
a lesser extent for the peak flow between 1000 and 1200minutes.
Estimated D50 during peak flows are in agreement with the grain
size distribution of the surface bed materials and likely corre-
spond to the surface D50 (8.7 ± 3.9 mm) during peak flow condi-
tions. During base flow conditions, transport does not occur or is
characterized by low D50 corresponding to the transport of very
small grains (<1 mm) not considered in our calibration. Figure 8c
shows the number of peaks (counts) per minute above the mini-
mum threshold amplitude used in the FAAD algorithm. This value
does not correspond to the number of impacts used in the FAAD
processing because many counts can be part of the same impact.
Since the mean D50 of bedload transport and instant number of
counts generally increase as a function of water discharge, the
trend of both shows some similarity (Figures 8b and8c). However,
we failed to obtain a relationship between these two variables for
the laboratory experiments, which means a calibration could not
be established for peaks counting with the grain size distribution.
Nonetheless, the number of counts as displayed in Figure 8c pro-
vides qualitative information about the instantaneous transport
rate and could be useful to constrain the temporal dynamic of
bedload transport in addition to the estimated grain size.
Discussion

In the framework of acoustic analysis of marine sediment
transport, several studies already highlighted the inverse
function of the amplitude and frequency exponents for C1 = 1, (b) final
A0.39/F0.86. The 95% prediction intervals are represented by the dashed
nset. (See online version for the references to colour in this figure). This
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Figure 8. Flash flood event (20 June 2013) in the Olewiger brook. (a) Hydrograph, (b) estimated D50 using the power law relation in Figure 7b with
associated uncertainties (blue area) and the range of riverbed surface D50 (grey rectangle), (c) temporal variations of peaks counting. (See online ver-
sion for the references to colour in this figure). This figure is available in colour online at wileyonlinelibrary.com/journal/espl
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relationship between frequency and grain size (Thorne, 1985,
1990; Bassett et al., 2013). Using a hydrophone scanning the
sonic to ultrasonic band mounted in a rotating drum, Thorne
(1985) observed significant variations of mean peak frequen-
cies from approximately 10 to 100 kHz for uniformly sized par-
ticle mixtures of diameter 0.9 to 12 mm and determined the
predominant acoustic source as inter-particle collision. Thorne
(1990) performed similar measurements in a marine environ-
ment with gravel transport and noticed a good agreement be-
tween the shape of ambient noise spectra between laboratory
and field observations. Using a hydrophone located in a tidal
channel, Bassett et al. (2013) observed a relationship between
the particle sizes (gravels to pebbles, around 4 to 170 mm)
and peak noise levels at lower frequencies from 4 to 20 kHz,
corresponding approximately to our measurement frequency
range. However, the relationship between characteristic fre-
quencies and particles sizes between these studies and the
present one (frequency ranging from around 0.5 to 11 kHz,
grain size from 1 to 63 mm) are quite different, most probably
due to the nature of the source, the medium of wave propaga-
tion and the sensor configuration.
Recently, progress has also been made in the characteriza-

tion of the material regarding the size of bedload particles,
using the Swiss plate geophone (Rickenmann et al., 2014).
In this preliminary attempt of extracting grain size information,
a promising relationship is obtained between the maximum
signal amplitude and the mean b-axes of the transported par-
ticles larger than 10 mm. However, the authors noticed that
this relationship is not well constrained, with a large scattering
of the dataset and the need of some amplitude correction,
whereas our approach appears to be equally applicable to dif-
ferent places because it only depends on the plate/sensor con-
figuration and is sensitive to smaller particles (above 1 mm). In
addition, it is probably nearly independent of the test site for a
typical range of flow velocities in gravel-bed rivers (approxi-
mately 0.8 to 5 m s�1). The estimated D50 using A–F ratio
analysis is thus a critical improvement in the characterization
of the time-varying properties of bedload transport with
Copyright © 2014 John Wiley & Sons, Ltd.
impact plate systems. Nonetheless, no comparison with col-
lected sediments in the field is hitherto available but the pre-
sented results strongly support the reliability of such
laboratory calibration and further promising applications in
gravel-bed rivers. A new field site in a similar gravel-bed
stream (Koulbich River, Colpach, Luxembourg) is already
equipped with the same plate set-up placed directly in front
of a bedload collector on the streambed. The principal aim
of this new field experiment will be to apply and test the pro-
cessing approach developed in this article at another field site.
For a complete bedload transport analysis, the calibration of
peak counting with collected sediments, as done with the
Swiss plate geophone, is planned for the total bedload flux es-
timation of each single flood event. Indeed, the number of
counts (Figure 8c) must be associated with the number of im-
pulses estimated with the Swiss plate geophone (Rickenmann
et al., 2012, 2014). As already studied by Rickenmann et al.
(2014), the number of impulses is the most accurate variable
related to the total transported mass, but a large range of mass
values is needed to get a reliable relationship. According to
these studies, it is possible to estimate the total bedload flux
more accurately after a single flood event than monitoring
continuously the amount of transported material. For the
well-studied Erlenbach stream, the best fit is obtained using
bedload mass data over three-orders of magnitude. Moreover,
the scattering of impact data is more important for low mass
values. This observation was also noticed in our flume exper-
iments where no significant relationship was found between
the total mass recovered in the basket sampler and the total
number of impulses. Therefore, collecting sediments in the
field after several flood events appears to be the best option
to complete this laboratory dataset.

From a practical point of view, the configuration of the plate
set-up and the intrinsic properties of the sensor are of primary
importance to ensure the reproducibility of this analysis in dif-
ferent places around the world. Indeed, a proper recording of
the plate wave mode generated by the grain impact requires
the installation of the sensor directly on the contact plate.
Earth Surf. Process. Landforms, (2015)
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Moreover, the sensor should have a wide-band and stable fre-
quency response in the sonic frequency range to correctly re-
trieve the signature of each single impact with the FAAD
procedure. The sensor used in this study has the suitable prop-
erties, since it was designed for shallow water applications and
is, therefore, perfectly waterproof. However, cheaper sensors
such as the piezoelectric accelerometer could be used if water-
proof conditions can be guaranteed.
Conclusion

Results from laboratory flume experiments and one single sum-
mer flood event in a gravel-bed stream show that large and
small gravel material is well identified by the corresponding fre-
quency and amplitude attributes. The FAAD algorithm used to
extract such properties from impact measurements is very
promising in view of estimating the temporal variability of me-
dian grain size and quantifying processes of bedload transport
in rivers. To our knowledge, this is the first time that such an es-
sential bedload property is estimated with high temporal reso-
lution (minutes range) using an impact plate system,
confirming the potential of this kind of bedload surrogate mon-
itoring technique in accordance with recent developments in
this research domain (Rickenmann et al., 2013). In order to
fully exploit the potential of such measurements method, fur-
ther applications should consider the installation of many iden-
tical plates to study the variability of bedload transport along
river cross-sections and profiles. This signal decomposition
method is also a key to an effective sparse representation of
the recorded signal, allowing for the reconstruction of impact
signals using the set of seven chirplet parameters characterizing
each impact. This method is, therefore, useful to elaborate
long-term continuous monitoring preserving the main informa-
tion of the records and requiring minimal storage capacity.
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