
1. Introduction
Exploring the infrasound band (below 20 Hz, inaudible for human ears) with dedicated microphones has become 
increasingly popular for studying various volcanic eruptive styles from short to long distances (a few to thousands 
of km) (Fee & Matoza, 2013). For the specific case of open-vent volcanoes where the magmatic pressure within 
the plumbing system can be released (in contrast with closed edifices), infrasound appears particularly suitable 
for the continuous recording and characterization of lava lakes (Barrière et al., 2018; Fee et al., 2010; Johnson 
et al., 2018; Patrick et al., 2016; Valade et al., 2018), degassing vents, inner crater and cavities (Fee et al., 2010; 
Matoza et al., 2010; Ripepe et al., 2010) or lava fountaining and lava flows (Lyons et al., 2021; Thelen et al., 2022; 
Ulivieri et  al.,  2013). Strombolian explosions can be effectively recorded from tens of kilometers (Dabrowa 
et al., 2014) to distances exceeding several hundreds of km (Marchetti et al., 2019). The range-dependent capa-
bility of infrasound installations for monitoring long-lived Hawaiian style lava effusion is generally constrained 
to local distances (<15 km), as evidenced at Kīlauea, Hawaii (Fee & Garcés, 2007; Garcés et al., 2003; Thelen 
et al., 2022). Depending on the source energy, such a local monitoring can be hampered by atmospheric effects, 
where wind is the main source of infrasound noise that can mask volcanic signals (Fee & Garcés, 2007). Path 
effects due to the topography can be significant at local scale, altering the waveform (Lacanna & Ripepe, 2013) 
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and resulting in biased source locations if straight-line propagation is assumed (Fee et al., 2021). In case of a 
dense urban area nearby, human activity can also be an issue, since the anthropogenic acoustic noise at infrasound 
frequencies can reduce the detectability of other signals (McComas et al., 2022). Finally, microbaroms gener-
ated over the oceans are a dominant source of ambient noise recorded worldwide around 0.1–0.4 Hz (Bowman 
et al., 2005) and can contaminate volcanic signals (Fee et al., 2010; Rosenblatt et al., 2022).

Nyiragongo, located in the Virunga Volcanic Province, is one of the most active volcanoes on Earth (Wright 
et al., 2015) (Figure 1a). Together with its neighbor Nyamulagira located around 14 km away, Nyiragongo is 
an important emitter of sulfur dioxide (SO2) characterized by continuous passive degassing (Carn et al., 2016). 
The effusive activity within its ∼1.2 km wide crater takes the form of a lava lake most of the time (Barrière 
et al., 2022). On 22 May 2021, the lava lake was drained and the inferred shallow dyke intrusion propagated up 
to Lake Kivu without any obvious precursory signs (seismicity, deformation, gas emissions, infrasound) as docu-
mented by Smittarello et al. (2022). For the third time in Nyiragongo's known eruptive history after January 1977 
and 2002, lava escaped from fissures opening along Nyiragongo's southern flank, rapidly reaching the northern 
limits of the urban area and ultimately entering the city of Goma, which nowadays hosts about 1 million inhab-
itants (Syavulisembo et al., 2021) (Figures 1a and 1b). A few months later, the intermittent reappearance of lava 
within Nyiragongo's central crater was confirmed by the Goma Volcano Observatory (GVO) between September 
and November 2021 (Global Volcanism Program, 2021).

Between 2013 and 2016, two infrasound arrays were deployed in safe places in the framework of the seismic 
network KivuSNet (Oth et al., 2017): the Virunga Park rangers' building (station KBTI, ∼5.6 km away from the 
crater rim) and the GVO's facilities in the city center of Goma (station GOM, ∼17.3 km away). An additional 
stand-alone sensor on Nyiragongo's rim (station NYI) was deployed at the summit in early 2018 and fully oper-
ational by the end of 2019 (Figures 1a and 1b). Near-source infrasound stations (i.e., flank and summit) already 
provided insights into the eruptive dynamics of Nyiragongo (Barrière et al., 2018; Valade et al., 2018). However, 
operating an infrasound station like GOM in a dense urban area is challenging (McComas et al., 2022) and has 

Figure 1. (a) Nyiragongo as viewed from the Goma Volcano Observatory (station GOM) and at the summit (station NYI) in 2018. (b) Map of the study area depicting 
the limits of the urban area (Michellier et al., 2016), the eruptive fissures and the lava flows of the 2021 flank eruption (Smittarello et al., 2022). The locations of the 
infrasound stations are represented by green triangles with two insets for KBTI and GOM showing the configuration of the three-element arrays. Circular red dashed 
lines correspond to the 2-D propagation of an infrasound wavefront from Nyiragongo's crater. The main roads are plotted from data sets available at the WFP geonode. 
The boundary R.D.C/Rwanda is plotted accordingly to the 2015 GADM database. The background topography is derived from SRTM data with 1 arc-second resolution 
(NASA/United States Geological Survey). (c) Daily count of infrasound detections at KBTI and GOM between 22 May 2020 and 22 May 2021 00:00 UTC, represented 
as a function of direction of arrival (DOA) (left polar plots) and hour of day (UTC time) (right histograms). An event is declared when the normalized cross-correlation 
coefficient between signals of the 3-element array exceeds a threshold of 0.6. Counts over the 1-year period are normalized by the number of days with available data, 
giving average daily counts. The average DOA per hour of day (color scale in histograms) are obtained by calculating the circular mean (Berens, 2009).
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not been adequately tested or explored worldwide. If an infrasound station deployed in a city detects a coherent 
and meaningful signal, it could reduce the need for a dangerous geophysical deployment, overcoming possible 
accessibility, security and/or budgetary issues.

Alongside the use of infrasound sensors, space-based observations are also an efficient complement for moni-
toring eruptive activity. The analysis of radar amplitude images acquired by Synthetic-Aperture Radar (SAR) 
satellite sensors offers the opportunity to detect morphology changes of volcanic craters as evidenced at African 
lava-lake volcanoes Nyiragongo, D.R. Congo (Barrière et al., 2018, 2022; Smittarello et al., 2023), its neighbor 
Nyamulagira (Burgi et al., 2021) and Erta' Ale, Ethiopia (Moore et al., 2019). Sulfur dioxide is a key constituent 
of volcanic plumes which can be measured from space-based spectrometers owing to its distinct absorption spec-
tral signature in the ultraviolet (e.g., Carn et al., 2016; Theys et al., 2019). Space-based instruments with infrared 
capabilities allow for the detection of thermal anomalies (hotspots) related to volcanic activity (e.g., Marchese 
et al., 2019; Massimetti et al., 2020). These multidisciplinary data (i.e., crater geometry, SO2 emissions, hotspots) 
will be jointly analyzed in this study with infrasound records.

2. Infrasound Data Processing
2.1. Single-Station Array Processing

KBTI and GOM stations are both equipped with three sensors, which are portable and cost-effective infraBSU 
instruments (corner frequency of 10 s) manufactured by Boise State University (Johnson et al., 2012). They are 
connected to the same acquisition system with a small aperture of ∼20-m between sensors, similar to other local 
deployments at volcanoes (Johnson & Ronan, 2015; Yamakawa et al., 2018). Deploying at least three sensors at 
the same site allows performing array processing for retrieving the direction of arrival (DOA) and an apparent 
velocity (Vapp) of coherent waves passing through the array. Based on their array responses (Figures S1 and S2 
in Supporting Information S1), these two deployments are efficient at detecting coherent infrasound arrivals in 
the frequency range 1–8 Hz. Standard least squares beamforming (De Angelis et al., 2020) is applied to each 
3-element array for successive windows of 10-s length overlapped by 50%.

2.2. Multi-Station Processing

If a signal coming from Nyiragongo is recorded at different stations, the spacing between sensors by a minimum of 
5.5 km (inter-station distance NYI-KBTI) allows exploring a wider frequency band than the single-station approach 
down to 0.1 Hz (i.e., at least 1.5 infrasonic wavelengths between NYI and KBTI). Assuming sub-horizontal plane 
wave propagation with apparent velocity close to the adiabatic sound speed (Vapp ∼ 340 m/s), red dashed lines in 
Figure 1b mimic the atmospheric propagation of a circular wavefront of a signal originating from Nyiragongo's 
crater. Such a signal would take ∼50 s to reach GOM in GVO's facilities on the shore of Lake Kivu.

Cross-correlating continuous infrasound signals acquired at both locations can be useful for identifying coher-
ent signals across a station pair, as commonly done in ambient seismic noise processing (Bensen et al., 2007). 
As sole pre-processing procedures, data are filtered between 0.1 and 10  Hz and normalized in time domain 
using the running-absolute-mean method in order to enhance continuous signals (Bensen et al., 2007). The final 
cross-correlation functions (CCFs) are calculated from successive 10-min signal segments with 50% overlap, thus 
leading to 5-min time sampling.

Picking the maximum coefficient of each CCF allows determining the time lag needed for the dominant infrasound 
signal to reach one station after the other. Cross-correlating 10 min-long segments with minimal pre-processing 
will generally result in very low cross-correlation coefficients. A straightforward solution for differentiating peri-
ods with clear and no clear infrasound wave arrival is to compute the signal-to-noise ratio (SNR) of the CCFs. We 
choose the following definition (Yang & Ritzwoller, 2008): SNR = max/noise, where max is the peak amplitude 
of the CCFs in a time lag window corresponding to a potential wave arrival originating from Nyiragongo and 
noise is the rms (root-mean-square) amplitude of the CCFs outside the signal window.

3. Space-Based Complementary Observations
3.1. Lava-Lake Pit Crater Depth and Radius

Barrière et al.  (2022) set up an automatic method called SAsha (SAR shadows analysis) based on the simple 
principle that SAR signals (radar beam along a line of sight) impinging on a natural or man-made structure cast 
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shadow proportional to its height. At Nyiragongo, times series of the lava-lake level, elevation and mean radius 
of the pit crater rim were obtained from a dense data set of satellite images over about 20 years (2002–2021). 
Smittarello et al.  (2023) developed the method called PickCraterSAR, which extend the applicability of SAR 
amplitude when the layover effect limits the maximum depth reachable by the SAsha method (see both studies for 
more details). In the present study, we provide the merged data set between SAsha and PickCraterSAR up to July 
2021 and extend the time series with newly processed COSMOSkyMed images up to April 2022.

3.2. SO2 Emissions

The TROPOMI instrument on board the Sentinel-5P satellite samples the Earth's atmosphere once a day with 
unprecedented spatial resolution of 3.5 × 5.5 km 2, which allows differentiating SO2 emissions from very close 
volcanoes such as Nyiragongo and Nyamulagira (Theys et al., 2019). TROPOMI SO2 vertical column data from 
the S5P operational processing algorithm (Theys et al., 2017) are used to estimate daily SO2 mass, by summing 
up the data over the entire detected SO2 plume. For this, we assume the volcanic plume from Nyiragongo to be 
about 1 km above its summit, in a 1-km thick layer (Theys et al., 2019).

3.3. Thermal Anomalies

The multi-spectral instruments on-board Sentinel-2 and Landsat-8 satellites allow a spatial resolution of 20 and 
30 m in the Short Wave Infrared bands, respectively (Marchese et al., 2019). We applied the HOTMAP algorithm 
(Murphy et al., 2016) for highlighting the thermal radiation of Nyiragongo's intra-crater lava eruptions (lava lake, 
spatter cone, lava flows, hot gas plume). Sentinel-2 and Landsat-8 results (complemented by Landsat-9 data since 
5 November 2021) are merged by multiplying hotspot pixel counts by the area of the pixel (in m 2). Note that both 
underestimation and overestimation of hot pixels can often occur due to the presence of volcanic and/or water 
clouds (e.g., Massimetti et al., 2020).

4. Infrasound Monitoring Results
4.1. Single-Station Approach

Figure  1c depicts daily statistics of infrasound events (counts per Direction of Arrival—DOA—and hour of 
day) at KBTI and GOM arrays over a year-long period (May 2020–2021) when a persistent active lava lake was 
observed prior to the May 2021 eruption (Barrière et al., 2022) (See also Figures S3 and S4 in Supporting Infor-
mation S1). The number of detections at KBTI is more than 25 times higher than at GOM. A vast majority of 
infrasound signals retrieved at KBTI are coming from Nyiragongo while most of the detections at GOM indicate 
infrasound sources to the southwest. There is a clear diurnal effect within the shallow Atmospheric Boundary 
Layer affecting wave propagation path and amplitude due to changing temperature and wind conditions (e.g., 
Fee & Garcés, 2007; Marcillo et al., 2015; Smink et al., 2019). At both locations, the number of detections is 
significantly reduced during daytime. At GOM, this also leads to reversed DOA to the east-northeast. Nearby 
anthropogenic activities (e.g., airport, military operations, construction) are potential additional sources of noise 
(McComas et al., 2022). Detections at GOM during working hours could thus include both anthropogenic and 
natural events from distant and local sources. However, there is no evidence of daily repetitive events originat-
ing from the volcano. On the contrary, the DOA remains quite stable at KBTI, pointing throughout the day at 
Nyiragongo.

4.2. Multi-Station Approach

CCFs of successive 10-min segments are computed for three station pairs (only one sensor is chosen for KBTI 
and GOM). The result is displayed as a map of daily CCFs envelopes (2D plane “time lag vs. date”) obtained 
by averaging 10-min CCFs over 1-day lagging window (Figure 2a). Clear single maxima (red color range) are 
observed at positive and nearly constant time lags tobs of 16.5, 34, and 50.5 s (with standard deviations of ∼0.08, 
0.13, and 0.17  s, respectively) as the inter-stations' distance increases (5.6, 11.7, and 17.3 km, respectively). 
Assuming a straight-line propagation and a wave speed of 340 m/s, the theoretical differential travel times ttheo 
from a signal generated at Nyiragongo's lava lake is respectively 16.5, 34.4, and 50.9  s for the correspond-
ing inter-station distances (Figure 1b). Considering the above-mentioned simplified assumptions, observed and 
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theoretical values fit remarkably well and prove that infrasonic waveforms are only marginally distorted between 
the crater rim and the GVO. The CCFs were filtered in the band [0.4–2] Hz, which is found to be optimal over  the 
entire time period for retrieving coherent signals from Nyiragongo (See Section 6 and Figures S5 and S6 in 
Supporting Information S1).

The SNR plotted in Figure 2c are extracted from averaged 10-min CCFs over 1-day lagging window with 5-min 
sampling interval. Using a 1-day lagging window smooths diurnal effects and preserves the temporal onset of 

Figure 2. (a) Pictures of Nyiragongo's crater (courtesy of T. Nyandwi except the picture taken from a helicopter flight on 5 November 2021 by J. Subira. (b) 
Normalized Hilbert envelopes of cross-correlation functions (CCFs) displayed in a plane “date versus time lag.” Daily windows with less than 10% of calculated CCFs 
are ignored (blank parts). Only sections around the single maxima for each station pair are plotted (see Figure S6 in Supporting Information S1). All single CCFs are 
scaled by their maximum (in red). Theoretical travel-times from a source at Nyiragongo are indicated by horizontal black lines. (c) Signal-to-noise ratio from averaged 
CCFs calculated over 1-day lagging windows using a 5-min sampling interval. A zoom for values between 0 and 10 is plotted below. (d) Zoom into 3-day period 
highlighted in panel (c).
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variations. Lower SNR are observed with increasing inter-station distance and distance to Nyiragongo's source 
due to path effects (i.e., the best pair is NYI × KBTI and the worst is NYI × GOM). Visual observations taken 
at the summit (Figure 2a) strongly suggest that the overall loss of correlation for several months in 2021 (June to 
September, November) is related to the absence of lava eruptions. Zooming into these specific transition periods 
(Figure 2d) shows that each fading or onset of correlation is well detected with high temporal resolution for the 
three station pairs (GOM was unfortunately not operational during several days right after the flank eruption). It is 
worth noting that the last increase of SNR in November 2021 is more progressive than in September and became 
noticeable for the station pair NYI × KBTI about 18 hr before the pair KBTI × GOM. The pair NYI × GOM 
does not yet allow to pinpoint the signature of Nyiragongo's source during the same period (after assuming the 
threshold SNR ≥ 3). This implies that the source amplitude during the first hours of this new eruptive event is 
evidently too low to be detected at GOM and that a too large inter-station distance may additionally hamper the 
detection of coherent arrivals.

5. Nyiragongo's Eruptive Activity in the Period 2018–2022
From a monitoring perspective, we may define a flag indicator of Nyiragongo's infrasound source by merging 
the time delays and SNR detection criteria defined previously. In Figure 3, we plot a binary indicator where 1 
(“yes”) indicates if, for any station pairs, tobs falls within the interval ttheo ±1 s and SNR ≥ 3, and 0 (“no”) indicates 
otherwise. Before 2020, this parameter is almost entirely derived from the pair KBTI × GOM. Still in Figure 3a, 
we plot the infrasound amplitude (one rms value for 10-min window) at KBTI, which has the best data complete-
ness. It is affected by large diurnal variations so the daily median (in red) is plotted onto this 10-min curve (gray). 
Complementary information on the crater's morphology changes (SAsha and PickCraterSAR methods), SO2 
emission (TROPOMI/Sentinel-5P) and thermal hotspots (Sentinel-2 and Landsat-8/9) are added for providing an 
overview of Nyiragongo's eruptive activity from January 2018 (start of TROPOMI observations) to April 2022 
(end of operation for the KivuSNet infrasound stations).

According to the infrasound flag indicator, Nyiragongo's lava lake was a persistent emitter of infrasound detected 
at GVO before the 2021 flank eruption. High SO2 emissions are synchronous with drops of the lava-lake level as 
clearly observed for the three successive degassing peaks in April-August 2019 (Theys et al., 2021). These ampli-
tude peaks are also detected in the infrasound records at KBTI. Between late 2019 and early 2020, all parameters 
conveyed the highest unrest for the entire period 2018–2022 more than a year before the flank eruption. Peaks 
and sustained high levels of infrasound amplitude (night and day), SO2 emissions, thermal hotspots and lava-
lake surface (including spatter cone activity) lasted several months. These signals ended with a major lava-lake 
level drop in April 2020, which was associated, according to seismicity, to a deep magmatic intrusion beneath 
the edifice toward the northeast (Barrière et al., 2022). This kind of dyking events with surface manifestations 
occurred several times in the past two decades and at least four times in the period studied here: February 2018, 
October 2018, from April to August 2019 and in April 2020.

The lowest levels of infrasound amplitude at KBTI and loss of correlation between stations (flag = 0) were 
obtained when the crater was deep and empty after the May 2021 flank eruption, as confirmed by rare pictures 
taken at the summit (Figure 2a) and satellite images (Figure S7 in Supporting Information S1). Peaks in infra-
sound amplitude and SO2 emissions occurred during the eruption on 22 May while the lava lake was draining 
(Smittarello et al., 2022). Nyiragongo's infrasound source remained active more than a week after the eruption 
until 31 May 2021 (Figure 2d). The absence of observable lava-related thermal anomaly was noticed one day later 
on 1 June 2021 (Figure S7 in Supporting Information S1). This date corresponds to the deepest crater bottom 
after successive deepening and enlarging of the pit crater (∼580 m deeper than before the eruption), after which 
the crater refilled the crater bottom from collapsing walls (Smittarello et al., 2023). Both renewal of intra-crater 
activity on 28 September and 25 November 2021 are clearly identified in the infrasound records, further validated 
by thermal imagery on 29 September despite very cloudy conditions (Figure S8 in Supporting Information S1) or 
by visual inspection on 1 October (Figure 2a). On 25 November 2021, the acoustic signature from the crater likely 
revealed the renewal of lava eruption, as confirmed on 27 November by visual observations from GVO at the 
summit (Global Volcanism Program, 2021). Since this date, the continuous eruption recorded by the infrasound 
sensors ultimately formed a nascent lava lake within Nyiragongo's crater, similar to those observed between the 
historical flank eruptions (1977, 2002, and 2021), which could remain highly active or become encrusted over 
time (Barrière et al., 2022). SO2 emissions and thermal hotspots did not show such a clear and/or synchronous 
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increase. Since early 2022, all parameters are indicative of the renewal of sustained activity. The presence of an 
active lava lake was still noticed one year later by GVO in February 2023 (Global Volcanism Program, 2023).

6. Characteristics of Nyiragongo's Infrasound Signature
A few studies performed in recent years provide insights into the source mechanisms of the persistent Nyiragon-
go's infrasound signature before the May 2021 eruption. Using close-range sensors deployed during a 2-day 
experiment in April 2016, Valade et al. (2018) explored the acoustic wavefield within the crater in the frequency 
band 0.5–10 Hz. They characterized the main infrasonic sources as the persistent spattering at the lava lake's 
surface and the intermittent spatter cone activity alternating between quiescent, effusive and more vigorous 
explosive phases. Using colocated seismo-acoustic records at KBTI over ∼2 years (September 2015–November 
2017), Barrière et al. (2018) identified long-period (<2 Hz) repetitive seismic events and continuous tremor (i.e., 

Figure 3. (a) Flag indicator for Nyiragongo's source (see the main text). Below, 10-min RMS amplitude at KBTI (gray) and moving daily median (red). Results are 
obtained in the band [0.4–2] Hz. (b) Pit crater geometry (elevation and radius) using PickCraterSAR and SAsha methods, including the variations of the lava-lake level 
(in red). Estimates of the lava-lake bottom before the flank eruption are obtained from space-based photogrammetry and SAR images in 2002–2003 when the crater was 
empty (see Barrière et al. (2022) and Smittarello et al. (2023) for more details). PickCraterSAR data are smoothed with a ±1 day moving average window (Smittarello 
et al., 2023) or ±7 days for updated results based on COSMOSkyMed images only. (c) Space-based daily solutions for SO2 emissions obtained from TROPOMI and 
thermal hotspots associated to Nyiragongo (S2 stands for Sentinel-2, L8/9 for Landsat-8/9).
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a persistent pressure perturbation) associated with infrasonic emissions and originating from Nyiragongo's crater. 
Similar to Richardson et al. (2014) at Villarica volcano, Barrière et al. (2018) interpreted these seismo-acoustic 
signals as related to the large and persistent bubble bursting at the lava lake's surface. Barrière et  al.  (2019) 
confirmed the shallow mechanism of the lava-lake generated tremor by comparing intra-crater seismic records 
with stereographic time-lapse camera in September 2011 (i.e., before the appearance of the spatter cone in March 
2016). As observed at Halema'uma'u lava lake (Patrick et al., 2016), the amplitude of the continuous lava-lake 
tremor is modulated by the alternance of spattering and gas pistonning phases.

Inter-station correlation (CCFs) emerging to a lesser extent in the low (0.1–0.4) and high frequency bands 
(2–10 Hz) also highlight the broadband nature of the infrasound tremor generated at Nyiragongo (Figures S5 
and S6 in Supporting Information S1). Discernible at night, its amplitude is of the order of 10 −1 Pa at the summit 
(NYI), 10 −2 Pa at GOM and in-between at KBTI. The amplitude range recorded at NYI and KBTI is lower by one 
to two orders of magnitude than recurrent explosion signals or tremors observed at other open-vent volcanoes at 
similar local distance, for example, at Villarica, Chile (Johnson et al., 2018; Ripepe et al., 2010), or Etna, Italy 
(De Angelis et al., 2020; Ulivieri et al., 2013). A background tremor amplitude around 10 −1 Pa is closer to levels 
retrieved at Kīlauea for a distance of less than 7 km from Halema'uma'u lava lake (Patrick et al., 2016). Note 
that the station NYI was deployed behind the crater rim for technical reasons (see Figure 1a) and the measured 
infrasound pressure level is most likely affected by the steep near-source topography (Lacanna & Ripepe, 2013).

CCFs in the low (0.1–0.4) and high frequency bands (2–10 Hz) depict higher SNR values after the flank erup-
tion when an active source from the crater is identified (Figure S6 in Supporting Information S1), which convey 
stronger infrasound emissions (as also observed in the 10-min rms amplitude timeseries at KBTI, Figure 3a). 
Contrary to the pre-eruptive state characterized by persistent tremor signals, other tremor patterns are significant, 
like the transition to periodic appearance of hour-long signals to continuous tremor during the renewal of activity 
in December 2021 (Figures S9 and S10 in Supporting Information S1). Because a large lava lake and a spatter 
cone disappeared, the changing source properties (Rosenblatt et al., 2022) and modified acoustic response of the 
crater due to evolving geometry (Watson et al., 2019) can largely influence the frequency and amplitude content 
of this new infrasound signature. During the May 2021 eruption lasting only ∼6 hr (Smittarello et al., 2023), the 
draining of the lava lake and the lava fountaining on the flank can also be tracked using records from KBTI and 
NYI (Barrière et al., 2023). These aspects, which are beyond the scope of this paper, will be tackled in a dedicated 
study. Nevertheless, it is noteworthy that the frequency range [0.4–2] Hz remains the best band for monitoring 
Nyiragongo's intra-crater infrasound signature after the 2021 eruption.

7. Conclusions
At Nyiragongo, deploying only a few infrasound sensors is highly relevant for detecting major variations of intra-crater 
effusive activity. Space-based products (crater's morphology, SO2 emissions, thermal hotspots) and occasional visual 
inspections at the summit complement well the (near) real-time assessment of the eruptive unrest derived from infra-
sound records. The recurrent political instability and civil wars in the whole Kivu region remain however an impor-
tant concern for the long-term sustainability of such ground-based monitoring infrastructures. At the time of writing 
(early 2023), the civil war zone has extended to the southern territory of Nyiragongo, limiting the access to NYI and 
KBTI stations (GVO Pers. Comm.). The harsh field environment near Nyiragongo leads to the need for an easily 
accessible and protected location for instrument deployment, which, in the context of Goma, likely resides within 
the confines of the city. The sole deployment of another “city-based” infrasound microphone at a different secure 
location from GVO (ideally closer to Nyiragongo) may also be a good strategy to extract meaningful information 
through a unique pair of urban stations. The presence of a growing lava lake with major level drops associated with 
deep dyke intrusions has been a permanent marker of sustained pressure build-up for the past two decades (Barrière 
et al., 2022), accelerating since mid-2015 (Walwer et al., 2023) up to the sudden occurrence of the May 2021 flank 
eruption triggered by edifice rupture (Smittarello et al., 2022). The fast return of fresh lava within its crater reflects 
once more the persistent unrest at Nyiragongo and the need to monitor its acoustic signature consistently.

Data Availability Statement
Sentinel-2 and TROPOMI data are available from the ESA Copernicus Open Access, that is, for Sentinel-2: 
https://scihub.copernicus.eu/dhus/#/home (satellite platforms “S2A_*” and “S2B_*” and product “S2MSI1C” 
in the search bar) and for TROPOMI: https://s5phub.copernicus.eu/dhus/#/home (Product “L2__SO2___” in the 
search bar). Landsat-8/9 data are provided by the USGS and can be downloaded from the Google Earth Engine 
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platform, that is, for Landsat-8: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_
C02_T1_RT_TOA, and for Landsat-9: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_
LC09_C02_T1_TOA. COSMOSkyMed data (ISA) are available from the Virunga Supersite Initiative (https://
geo-gsnl.org/supersites/permanent-supersites/virunga-supersite/). Infrasound data archiving and accessibility 
from KivuSnet is ensured through the GEOFON program of the GFZ German Research Centre for Geosciences 
(https://doi.org/10.14470/XI058335) under the KV FDSN code (http://www.fdsn.org/networks/detail/KV/).
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