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Abstract 

The geophysical meaning of gravity anomalies has been debated again in several geophysical and geodetic journals. 
This paper picks up the approach of composing synthetically all gravity effects contributing to the gravity observed 
at the earth’s surface, as this aspect enables to determine exactly the physical meaning of Bouguer anomalies  
obtained under certain assumptions (e.g. reference surface). The paper also tries to clarify the errors introduced when 
calculating Bouguer anomalies with special respect to the situation in high mountainous areas. 

 
 

Introduction 
 
Recently in several journals the discussion on the physical meaning of gravity anomalies in geo-
physics has been revived (e.g. Hackney and Featherstone 2003). Often this is done in terms of 
gravity anomaly or gravity disturbance as defined in physical geodesy. In fact, the interpretation 
of what the Bouguer anomaly really means is an old problem. Geophysicists dealing with poten-
tial theory do not simply regard the Bouguer anomaly as gravity effect of density inhomogenei-
ties on a reference level. They do this as an approximation at best. It is true, that even in modern 
textbooks this fact is not accordingly emphasized, but there are a lot of papers having addressed 
this problem early in the past (e.g. Naudy and Neumann 1965, Tsuboi 1965). E.g. Tsuboi (1965) 
distinguished between SCBA (station Bouguer anomaly) and TCBA (true Bouguer anomaly) in 
order to clarify, that the Bouguer gravity is still related to the observation surface and not to any 
reference surface. Another topic in this discussion addresses the question which height system 
should be used when calculating the normal gravity at a gravity station. It has also been shown by 
several authors, that ellipsoidal heights rather than orthometric heights should be used (e.g. Vogel 
1982, Meurers 1992).  
 
Therefore it is a more appropriate approach to discuss the terminus “gravity anomaly” in geo-
physics not in terms of reduction or correction, but to use a synthetic concept in order to clarify 
the physical meaning of what is called Bouguer anomaly (e.g. Vogel 1982, Meurers 1992). It is 
essential to know the errors introduced when applying simplifications and assumptions. 
 
 
Definition of gravity anomalies in geodesy and geophysics 
 
In physical geodesy one of the most important goals is the determination of the geoid derived 
from gravity observations at the earth surface. The geoid is closely related to the disturbing 
potential T. This leads to the fundamental equation of physical geodesy describing the general 
boundary value problem where ∆g  is the scalar representation of the gravity anomaly ∆gi in its 
classical sense.  
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In geophysics we are looking for the geometry and the density contrast of anomalous sources 
referred to any reference model. The definition of the Bouguer anomaly (1) implies to use the 
gravity disturbance δg that again is a scalar quantity: 
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δgT   complete topographical mass effect 

 
Its physical meaning depends on the height system 
applied.  
 

 
Synthetic composition of observed gravity 
 
If we compose the gravity g observed at any point P on topography synthetically, we can con-
sider g(P) as  
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  δgT   gravity effect of mass distributed 

between topography and geoid 
  δgG  gravity effect  of mass distributed 

between geoid and normal ellipsoid 
 
 
 
 
 
 
 

h ellipsoidal height 
H orthometric height 
N geoid undulation 
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At this stage this implies, that we already ignored the misalignment of all vectors contributing to 
the gravity vector observed at P. The last two terms in (2) describe the gravity effect of topo-
graphic masses between topography and geoid or between geoid and ellipsoid respectively. At 
this moment let us assume to know the density distribution exactly. 
 

1. Bouguer anomaly determination based on orthometric heights: 
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Inserting (2) into (3) results to: 
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gS(P) is the gravity effect of all sources below the ellipsoid on topography. The Bouguer anomaly 
differs from gS(P) by the last two terms in (4) that can be estimated easily, if we know the geoid 
undulation and the density distribution. Rough estimates of the effect in the Eastern Alps show, 
that ignoring both expressions introduces both offset and height dependant error components.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                    Geoid [m]                                                              Gradient effect [mGal = 10-5 ms-2] 
 
 
 
 
 
 
 
 
 
 
 
 
                      Topographic mass effect [mGal]                                                   Total effect [mGal] 
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2. Bouguer anomaly determination based on ellipsoidal heights: 
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Inserting (2) into (5) results to: 
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Now the Bouguer anomaly is identical with the gravity effect of all sources below the ellipsoid 
on topography. Therefore ellipsoidal height systems should be preferred.  
 
The synthetic concept (eqs (4) and (6)) easily permits to explain which gravity effects are left in 
the Bouguer anomaly and tells us how to proceed when interpreting the anomaly in the model 
space. This even holds if we do not know exactly the density distributions assumed for the mass 
cor rections. We have to consider that there are a lot of simplifications used for the practical cal-
culation of the Bouguer gravity, which is closely related to its error budget (limitation of the mass 
correction area, density distribution within topographic masses, normal gravity at point P).  
 
The geophysicist has to know these errors in order to interpret the anomalies correctly. In forward 
modeling he has to consider all density inhomogeneities with respect to the density distribution of 
the normal ellipsoid. Of course, from a theoretical point of view, this might be a problem. The 
normal ellipsoid tells us nothing about the internal density structure as it is fully defined by only 
four Stokes’ constants. However, Moritz (1990) has shown that structures like those of the pre-
liminary earth model have a gravity distribution close to the normal gravity. This permits to use 
the normal gravity as a reference. Today there is no need to apply simplified formulae to calcu-
late the normal gravity at the observation site. Either closed formulae including atmospheric cor-
rection should be used instead or more precise Taylor series representations like that of Wenzel 
(1985). 
 
 
Ignoring gravity vector misalignments 
 
In principle we should formulate equation (2) as a vector instead of a scalar equation. However, 
the scalar approximation is inevitable to be left with harmonic quantities. The norm of a potential 
gradient vector does not meet Laplace differential equation while its projection to any direction 
does. To be more precisely we would need to know the direction of the observed gravity vector 
and not only its norm as resulting from gravity measurements. Only in that case we can calculate 
the projections of all contributing gravitational vectors to the direction of the observed gravity 
vector. We should keep in mind that even in geodesy the gravity vector misalignment is ignored 
to end up with the fundamental equation of physical geodesy. The error can easily be estimated. 
Ignoring the angle α between the true direction of the normal gravity at P and the ellipsoid nor-
mal passing P we get 
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δg3 fulfills Laplace equation in contrast to |dg|, that 
means, BA(P) is harmonic. 
 

 
 
Mass correction errors  
 
Several errors sources are limiting the accuracy of mass corrections: 
 

• geometrical approximation of topography 
• limited correction area 
• density distribution 
 

They show up both as random and systematical components that often correlate with the 
elevation of the gravity stations. Therefore those errors are able to disturb severely the gravity   
anomaly determined in high mountainous areas. The first problem can be easily solved today, as 
both precise terrain models and computing facilities are available. This permits to approximate 
the topography by arbitrary shaped bodies represented by polyhedra instead of flat topped prisms 
(e.g. Meurers et al. 2001). The gravity effect of polyhedral bodies can be calculated exactly (e.g. 
Götze and Lahmeyer 1988). The second problem concerns the limitation of the correction area 
under consideration. In principle the correction has to be performed over the whole earth surface. 
In practice only masses up to a distance of about 167 km (Hayford zone O2) is considered. This 
introduces a bias and, to some extent, small height dependant errors. The first aspect is important 
for crustal balancing investigations based on isostatic anomalies. 
 
The most severe error is introduced by applying average crustal density for the mass correction 
instead of the real density distribution which is a priori unknown. If information about the surface 
density can be utilized, the calculation of the Bouguer anomaly based on 2D density models gives 
an essential improvement. In fact, especially in areas with tectonic regime like an orogene with 
its complex nappe structure, even this approach is still incorrect as density does not only vary 
laterally. However, this method permits to estimate the effects and to detect apparent anomalies 
that are closely correlated with the topography in many cases (e.g. Meurers 1992). 
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Field continuation between arbitrary surfaces 
 
Many interpretation steps like interpolation or field transformation require the potential field to 
be known on a flat surface. As Bouguer anomalies are still related to the true observation site, 
that means to an irregular surface, we need accurate methods to perform the field continuation 
upward from the topography to a reference level. Downward continuation is not allowed as due 
to the incompleteness of mass corrections sources still remain below the topopgraphy and 
therefore the anomaly is not harmonic there. Several approaches have been published in the past, 
among others the procedures by Xia et al. (1993) and Ivan (1994), that are based on the 
equivalent source concept. Xia et al. compare the observed field with that continued to the 
observation sites by DFT and adjust iteratively a flat surface density distribution situated below 
the deepest topography. Ivan uses a dipole distribution spread over the irregular topography, 
which is represented by a polyhedral surface, and solves a Fredholm integral equation of 2nd kind, 
whereby the surface integral for calculating the potential of the equivalent source is evaluated 
exactly. While in Ivan’s the space between equivalent source and topography has not necessarily 
to be harmonic, this requirement has to be fulfilled in Xia et al.’s algorithm. However, the 
method of Xia et al. can be applied even on Bouguer anomalies, as long as the high frequency 
content is sufficiently suppressed (Meurers and Pail 1998).   
 
 
Conclusion 
 
Modern processing and interpretation methods are required to obtain high accurate gravity field 
determination in rugged terrain: 
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Comparison of Bouguer gravity calculated by 
using different density distributions 
upper left: constant denstity 
upper right: laterally varying density 
left: error due to wrong density assumption 
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Normal gravity correction 
• Ellipsoidal heights (station) are proposed to be used. 

 
Height correction 

• Closed expressions for the normal gravity as a function of the ellipsoidal height or Taylor 
series expansions have to be applied in order to consider the non-linearity of the vertical 
gradient. 

• Atmospheric correction has to be included. 
• Gravity field continuation between irregular surfaces (equivalent source methods) 

removes the effect of the anomalous vertical gradient. 
 
Mass correction 

• High precise ter rain modeling is required especially in close vicinity of gravity stations. 
• High precise station coordinates are required.  
• Gravity effect of lakes and glaciers in the vicinity of gravity stations has to be corrected 

because of the extreme density contrast between rocks and water or ice. 
• Corrections have to be calculated spherically up to a radius of at least 167 km. 
• DTMs have to be based on ellipsoidal heights. 
• 2D density models help to detect and to reduce mass correction errors. 
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