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ABSTRACT

Fractals and scaling laws abound in nature, and it is said that geometry of river networks and basins is an epitome of this.
This study investigates how, in the southern section of the tectonically unique African continent, scaling parameters and deviations
from ‘perfect fractal patterns’ relate to parameters like geomorphology through which the river flows, and the underlying geology.
A number of river network scaling laws and scaling parameters have been put forward, but it has been suggested that all river
networks can be divided into universality classes represented by just 2 of these scaling parameters. One of these is the fractal
dimension of individual streams, usually labelled d and having a value of ~1.1. The other parameter, Hack’s exponent h, expresses
the dependence of stream length (/) on drainage area (a) via Hack’s Law / = ca’. There is no universal value for h. Different
networks often have different values for h, and inside a given network the parameter is often observed to change with scale. We
use the natural laboratory of networks in southern Africa to investigate the variations in Hack’s exponent and find evidence to
confirm the existence of scaling regimes. We attempt to explain these variations in scaling using the regime model of Dodds and
Rothman (2000). At the smallest scale we find that non-convergent mountain streams exist in different settings, but their spacing
is determined by underlying rock type. In this type of drainage a~I, and hence h ~ 1. Once streams begin to converge, the value
of h drops, and is inversely correlated to the roughness of the underlying topography. This trend stops once basin sizes reach a
threshold value, above which basins may be self-similar. This threshold varies in individual networks. In the smoothest
topographies it occurs as low as 400 km?, but can occur as high as 1400 km® in other networks. While we have identified a number
of guidelines for correlating scaling parameters with basin settings, there exist significant variations around these guidelines which
we can only attribute to randomness, or small variations in the initial conditions during the initial formation of the river basins.

Introduction

One possible way of studying geometry of river
networks is by treating these networks as fractal
structures, using scaling laws that we now know
characterize fractals. A number of such laws have been
put forward to show how various network parameters
vary with scale. Such network studies often become very
theoretical, and may involve unrealistic assumptions as
their starting points. Shreve (1967) is an example of such
studies — he assumes river networks to be infinite, as
well as an absence of geological controls on their
courses. Other studies (e.g. Maritan et al., 1996; Rigon
et al., 1996) use relatively advanced mathematics, but do
not present any conclusions regarding the geology and
geomorphology in the river basins concerned. It is not
our intention to criticise such papers — they are
undoubtedly of value in topology, and provide us with
a framework to look at river basins from a different
angle. Indeed, we have recently published an article
dealing strictly with the mathematical properties of
river networks in southern Africa (Stankiewicz and
de Wit, 2005). However, we feel that a study
investigating how simple river network scaling laws
and parameters controlling these depend on not
only scale, but also local conditions such as
underlying geology, geomorphology and climate,

without extensive mathematical background, would be
of use. We therefore begin by introducing the river
basins of southern Africa, and follow that by describing
basic scaling laws.

Data
Rivers of southern Africa provide an excellent natural
laboratory for studying river networks. Drainage in
the region is shown in Figure 1. The major river is the
Orange, which is the 5th largest river in Africa both in
terms of main stream length (2150 km) and drainage
area (1,040,000 km?). Its tributaries drain vastly different
geological and climatic terrains. The upper Orange and
Vaal sources are in the high ground inland of the
Drakensberg Escarpment. This highland (reaching 3482
metres above sea level) has been suggested to be
inherited from a deep mantle plume that brought about
the break-up of Gondwana ~180 Ma (White and
McKenzie, 1989). The fact that the Orange has its
sources just 150 km west from the Indian Ocean, but
flows to the Atlantic 1400 km away, has been seen as a
case of drainage away from the new (Indian) Ocean,
supporting the plume hypothesis (Cox, 1989).

The Molopo and Nossob rivers drain (technically
speaking) the Kalahari basin. While presence of river
terraces indicates both these rivers were once perennial
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Figure 1. Drainage of Southern Africa. Orange River marked in orange, Limpopo in green. Their major sub-basins, as well as six main

Cape Fold Belt rivers have been labelled. The Great Escarpment is marked in blue. The centre and radius of the inferred ~180 Ma mantle

plume of Cox (1989) and White and McKenzie (1989) shown in red.

(de Wit, 1993), neither network has a record of
permanent flow during living human history (Bootsman,
1997). When water is transported in the channels,
overland flow never reaches the Orange — transport
takes place by groundwater.

The Fish River flows south through the arid Namibia,
and the only perennial section of its network is the
channel a few kilometres upstream from its confluence
with the Orange. The most dramatic feature of this river
is the famous Fish River Canyon in the river's lower
reaches. There the river has cut into the horizontal
quartzitic sandstones and shales of the Nama Group
(700 to 500 Ma) to reach the underlying schist and
granite gneiss of the Namaqua Complex (1200 to
1000 Ma; Buckle, 1978). In places the canyon is over
500 metres deep.

Another major tributary of the Orange is the
Hartebees, also known as the Sak. This river is also non-
perennial, but fossil evidence indicates that as recently
as 10 Ma the river flowed through a wet and wooded
environment (de Wit, 1993).

The western, southern and eastern boundaries of the
Orange River basin are formed by one of the main
features of the region’s geomorphology — the Great
Escarpment (Figure 1). This divide stretches from
southern Namibia to the Limpopo basin in an arc
~200 km from the coast, and is only breached by the
antecedent gorge of the Orange just before its outlet.
The divide is most spectacular in the Drakensberg on
the South Africa — Lesotho border. The zone between
the escarpment and the coast is drained by rivers

Figure 2. The Horton-Strachler ordering scheme for river
networks and parameters commonly used in scaling laws. The

legend shows what lines are used to represent orders 1, 2 and 3.

approximately perpendicular to the divide. Of these 6
are of particular interest: the Olifants, Gourits, Gamtoos,
Sundays, Great Fish and Kei (Figure 1) cross a band of
exhumed folded mountain ranges knows collectively as
the Cape Fold Belt. These ranges have been extensively
faulted and folded at ~250 Ma (i.e. before the break-up
of Gondwana), and a trellis river pattern has developed
across them. Main river segments have formed in the
weaker shales, leaving the hard Table Mountain
Sandstones (often quartzites) as vertical ridges. Lower
order streams then flow down these steep ridges to join
the main (higher order) stream. This environment is not
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found anywhere else in southern Africa, hence our
interest in it.

Another major river network in southern Africa is the
Limpopo, which flows east forming the border between
South Africa and Zimbabwe, before reaching the Indian
Ocean through a delta in Mocambique. Cox (1989)
suggests the Limpopo valley is a rift-inherited, related to
the failed spreading axis in the Kalahari identified by
Reeves (1972, 1978). The presence of this rift is
consistent with the plume theory of White and McKenzie
(1989).

For computational purposes, we used a 1 km
horizontal resolution Digital Elevation Model (DEM) of
the area. For sections of this study where this resolution
was too coarse, 1:250,000 topographic maps were used.

Methods
Scaling laws of river networks

The first tool usually applied when studying a river
network is stream ordering. The most common ordering
scheme is the Horton-Strachler method (Figure 2),
developed by Horton (1945) and later improved by
Strachler (1957). In this scheme all source stream
segments have order w = 1. When two source streams
meet, the segment downstream from the junction has
® = 2. The order increases by 1 when a stream joins
another stream of the same order; when two streams of
different orders meet, the segment downstream is
assigned the higher of the two orders. Natural quantities
to measure in an ordered basin are:

e the number of streams of a given order: 7n(w),

e average length of streams of a given order: /(w),

e average drainage area (enclosed by the watershed) of
streams of each order: a(w).
The outlet of the network obviously has the highest
order in the system, and is labelled Q. Clearly () = 1,
and a(Q) is the network’s total drainage area.

Horton (1945) introduced a number of
measurements that follow the ordering scheme
discussed above. The first was the bifurcation ratio,
R,(w), defined as the ratio of streams of order w to ones
of order w+1, i.e.

(1a)

His suggestion that R, is independent of w was the first
scaling law in the study of river networks. Two more
ratios can be defined:

(1b)

(1o

Horton’s laws state that the three ratios are independent
of order. Note the three ratios are defined in such a way
that they are all greater than unity.

One of the most famous scaling laws for river
networks is Hack’s law (Hack, 1957), which relates the

main stream length (longest possible stream length from
source to outlet) to its drainage area by the relation

@)
It could be expected from simple geometry that a ~ [,
and therefore h = '/2. However, in real networks

different values of h are observed, usually i # '/2. Hack
found the exponent equal to 0.6, but noted fluctuations
from basin to basin, with some of them having h as high
as 0.7. Further studies (e.g. Rigon et al., 1996; Maritan
et al., 1996) found h typically in the range (0.55, 0.60).
A theoretical approach by Rigon et al. (1998) produces
a value of h = 0.57 for what they term “feasible
optimum” of the network. Furthermore, observed values
for this exponent vary not just from basin to basin, but
also with scale in a given network. Mueller (1973)
identified three regimes where with h = 0.6 at the
smallest scale, 0.5 at the intermediate (20,000 — 250,000
km?) and 0.466 for the largest basins. More recently, in
a theoretical study Dodds and Rothman (2000)
conjectured the existence of up to 4 scaling regimes,
with Hack’s Law existing with a different exponent in
each. The smallest basins belong to non-convergent
streams running down hill slopes in parallel channels
where, provided basins have a uniform width, / ~ a, and
thus h has a value close to 1. When streams begin to
converge, a decrease in i would be observed. Dodds
and Rothman (2000) termed this the short-range regime.
At even larger scales the authors note that correlations in
stream and basin shape decrease, suggesting at this scale
streams belong to a random regime, with yet another
value for the exponent. Eventually, basins reach shapes
constrained by continental-scale structures (maximal
basins). As our study deals with drainage of a sub-
continent, we will not deal with the last regime, but one
of our aims is to test for the existence of these regimes,
and attempt to specify their ranges and the values of
h inside different regimes in different networks.
However, other network parameters must first be
introduced.

Two parameters are used to describe the actual
shape of the basin: Z, the length of the basin parallel
to the main stream, and Z,, the width of the basin
(Figure 2). As I is used far more often it is usually
written as just L. This convention can be confusing (as
by default / > L), but we will persist with it. As with /, L
can be related to the drainage area (Maritan et al, 1996)

©)

The exponent D shows how basin area changes with
different values of L, and is found in nature to have a
value very close to 2. It can be thought of as the fractal
dimension of the network, with D = 2 being a necessary
and sufficient requirement for a network to be self-
similar (e.g. Dodds and Rothman, 1999).

It is also possible to relate Z, the basin length, and /, the
stream length (e.g. Maritan ef al., 1996)
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Figure 3. Schematic linear drainage studied to examine the hill-
slope regime. Separation of adjacent streams (S) was measured
here, as well as mountain slope, and, where possible, belt half-
width (W) and the belts mean height above the mountain front.
Streams starting less than halfway up the mountainside were not
considered (1). When streams join before reaching the mountain
front, they were counted as two if the confluence was in the lower
half of the slope (2), otherwise the resulting stream was treated as
one (3).

@

d, the parameter in this relation can be thought of as
fractality of individual streams, and is usually observed
to have a value between 1 and 1.2 for real networks.
Note that the last three scaling parameters can be
expressed in terms of each other: D = d/h.

For our purposes here, these equations suffice to
quantify a network in terms of scaling parameters.
Readers for who this is not sufficient are referred to the
book of Rodriguez-Iturbe and Rinaldo (1997), and
the references therein. As we stated in the introduction,
we want to keep the mathematics to a minimum in this
article.

Obtaining steams and networks from our datasets
River networks were constructed by computer
simulations of water flow over the 1 km resolution
Digital Elevation Model (DEM) of southern Africa.
No differentiation was made between perennial and
non-perennial streams, or even dry beds. All channels
picked up in the DEM were treated as stream segments.
As lengths of first order streams could not be uniquely
determined, only orders from 2 upwards were included
in the analysis. A detailed description of the process of
generating such networks is provided by Stankiewicz
(2004).

As this resolution was not enough to study the hill-
slope regime postulated by Dodds and Rothman (2000),
1:250,000 topographic maps were used for that. It was
mentioned earlier that parallel basins need to have equal
width to belong to the ki =~ 1 regime. The best setting for
a study of parallel streams is the slope of a linear
mountain belt. Thus once such regions were identified,
we proceeded to measure the separation of such
streams, which corresponds to basin width. This
distance could be determined on the maps to the nearest
1 mm, which corresponds to 250 m. Interpretative

ambiguities may arise with streams draining the
mountainside converging before reaching the mountain
front. In this study streams that joined up before
flowing halfway down the slope were taken as one
stream, while streams with sources less than halfway
up the mountain slope were not considered at all
(Figure 3).

Quantifying the topography

Just like river networks, topography can also be
described as a fractal. To do that, it is necessary to think
of elevation as a function of two co-ordinates: latitude
and longitude. A fundamental consideration is the
correlation between the elevation values at two points as
a function of the distance between these points. As this
distance increases, the less one would expect the
elevation to be correlated. The mathematics involved in
computing the fractal dimension of topography is rather
complicated, and only a summary of the method of
Turcotte (1992) will be presented here.

Consider an N * N grid consisting of N° equally
spaced points, each having a particular elevation e(x;)).
A two-dimensional discrete Fourier transform of this
array will produce an N* N grid of complex coefficients.
Each of these coefficients is then assigned a radial wave
number, corresponding to its position from a specified
reference point in the grid, rounded to the nearest
integer value. The two-dimensional mean power
spectrum density is then defined as the mean of the
squares of absolute values of all complex coefficients
with the same wave number. The mean slope of the
logarithmic plot of this power spectrum density as a
function of the wave number then corresponds to the
fractal dimension of the topography.

Turcotte (1992) noted that this fractal dimension is an
insensitive measure of the topography. He found a
much more descriptive parameter in the y-intercept of
the above regression, which he showed is a measure of
the roughness of the topography. He also showed that
best-defined spectra are obtained when using grids with
N = 32. In this study the dimension and roughness of a
certain section of the landscape the 1 km DEM was
used. An m * p grid was first selected in such a way that
both m and n were multiples of 32, and the relevant
section was in the centre of the grid. The grid was then
divided into 32 * 32 sub-grids, and dimension and
roughness computed for each grid containing a section
of the network. These were then averaged to give the
values for the area concerned.

Analysis

Horton’s ratios

Once the networks were computed from the DEM, the
streams were ordered according to the Horton-Strachler
scheme. The Orange was found to have ) = 8 the
Limpopo Q = 7, and the six Cape Fold Belt networks
each had Q of either 5 or 6. Table 1 shows the values of
stream number, lengths and areas for each order, as well
as the corresponding Horton’s ratios in each network.
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Figure 4. Schematic drainage of the parallel ridges of the Cape Fold Belt. Parallel low order streams (w) drain the mountain side, reaching

the trunk river (w+1) flowing in the softer shale valley. Such drainage can cause apparent anomalies in Horton’ ratios.

While it is obvious there deviations in Horton’s
ratios, some patterns can be observed in the Orange and
Limpopo networks. R; is always the smallest of the
ratios, fluctuating between 1.5 and 3. At smaller orders
the values of each ratio decrease with increasing order.
At higher orders discrepancies can be attributed to
having much fewer data points.

The Cape Fold Belt rivers are much smaller than the
Limpopo, and hardly comparable to the Orange. With
basin areas between 20,000 and 70,000 km? they can
supply us with much less data, but not necessarily less
insight — some interesting analyses can be performed.
From Table 1 it is clear that there is considerably more
variation in the ratio than was the case for the Orange,
or even the Limpopo. In the Gamtoos basin R, is as high
as 8.50. Similarly, R, is very high (>10 in two cases).
These anomalies can be partially attributed to less data
points available, but could also be a reflection of a real
phenomenon. If a trunk stream flows through a soft
shale valley with lower order streams draining the hard
quartzite mountainsides on either side of the valley, the
branching ratios can be affected, and Horton’s ratio R,
will be larger than usual. There would, in fact, be a
direct relation between this ratio and the length of the
valley. The ratio of basin areas, R, and of stream
lengths, R;, may be similarly affected. This is illustrated
in Figure 4.

Hack’s Law

The next step in the analysis is examining the
relationship between stream length and drainage area in
each of the networks. Logarithmic plots of these values
for all sub-basins of order greater than 1 are shown in

Figure 5 a-h. The Orange river plot has by far the most
data points (4098), and the power-law relation (linear on
a log-log plot) is obvious. The slope, corresponding to
the value of h is 0.685 + 0.004, i.e. clearly not 0.5.
The correlation coefficient is high (92.5 %), but it should
be noted the graph is slightly concave. The Limpopo
plot gives h = 0.642 = 0.008, with a correlation
coefficient of 92.7 %. The smaller network only gave
1030 data points, but the power law relation is clearly
seen, as is the slight concavity of the curve. The 6 Cape
Fold Belt rivers had much fewer data points than the
two big rivers: the largest of the 6, the Olifants, had
204 sub-basins of order 2 and above, while the Kei had
just 45. Nonetheless, Hack’s Law plots for these basins
are all very well correlated, and give wvalues of
h between 0.585 and 0.665, with the uncertainties
varying between 0.018 and 0.032 in each case. As was
the case with the Orange and Limpopo, the slope is not
constant in these graphs, but decreases with increasing
area. As the slope of the logarithmic plots corresponds
to the value of h, any changes in it imply that the
exponent’s value is not constant. Thus from the data
presented here it is clear that /i varies not only between
basins, but also with scale in each basin, confirming the
existence of scaling regimes.

Short Range and Randomness Regimes

The plots in Figure 5 suggest that two scaling regimes
are present in the data obtained from the DEM. The 1
km horizontal resolution is too coarse to identify the hill
slope regime — this is confirmed by the fact that the
slope of the plots is never equal to 1. At the other end
of the scale, dealing with drainage of a relatively small
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Table 1. Horton's ratios for the river networks of southern Africa

® n(w) R, (0) (o) [km] R;(w) a(w) [km’] R, (0)

Orange 2 3,195 4.64 19.6 3.01 188 4.83
3 689 4.28 59.2 2.48 908 4.44
4 161 4.13 146 2.01 4,030 3.87
5 39 39 294 2.17 15,600 4.92
6 10 3.33 637 1.52 76,700 2.75
7 3 3 970 2.22 211,000 4.93
8 1 2,150 1,040,000

Limpopo 2 830 5.29 22 3.00 262 5.67
3 157 4.76 69 2.67 1490 5.49
4 33 4.71 183 1.94 8140 3.81
5 35 354 2.81 31100 6.14
6 2 2 995 1.52 191000 2.02
7 1 1510 386000

Olifants 2 157 4.24 21 2.76 246 4.71
3 37 5.29 58 2.05 1160 2.95
4 35 119 3.88 3420 10.67
5 2 2 462 1.24 36500 2.02
6 1 572 73800

Gourits 2 110 5.24 22 2.5 272 4.45
3 21 3.5 55 2.64 1210 5.52
4 6 3 145 1.63 6680 3.85
5 2 2 236 1.4 25700 2.09
6 1 330 53700

Gamtoos 2 88 5.18 23 2.65 261 4.87
3 17 8.5 61 4.08 1270 9.76
4 2 2 249 2.02 12400 3.31
5 1 502 41100

Sundays: 2 41 3.73 24 2.38 381 3.02
3 11 5.5 57 1.67 1150 3.38
4 2 2 95 3.65 3890 6.81
5 1 347 26500

Great Fish 2 70 4.67 21 2.62 300 3.77
3 15 3.75 55 1.69 1130 2.83
4 4 4 93 5.41 3200 11.38
5 1 503 36400

Kei 2 34 4.25 23 2.78 360 4.39
3 4 64 1.78 1580 3.06
4 2 2 114 2.55 4830 4.74
5 1 291 22900

section of a continent will not provide much data that
could represent the maximal basins bound by
continental-scale structures. We thus conclude that the
graphs on Figure 5 show the two regimes in the middle
of the scale of Dodds and Rothman (2000), i.e. short-
range and randomness, and that the basin size at which
the slope changes corresponds to the cross-over
between them.

As the Orange drains different terains, data will be
lost unless the network is separated into smaller sub-
networks. The 6 networks discussed earlier, and shown
in Figure 1 (Vaal, Upper Orange, Molopo, Nossob, Fish
and Hartebees) were thus treated separately here.
Similarly, the Limpopo data was separated into two
smaller networks — the Elands, and the upper Limpopo
(upstream from the Elands confluence). This provided

14 basins for the analysis, their properties summarized in
Table 2. In the table, D corresponds to the fractal
dimension of the topography over which the network
flows, and R the roughness of this topography. Both
these parameters are computed using the spectral
techniques of Turcotte (1992). The uncertainty
associated with the mean slope of sub-basins in a given
network appears to be large, but this is not unexpected
— each network contains many steep streams, as well as
many gentle ones, so the standard deviation of these
slopes is the same order as their mean.

Correlation coefficients between h and basin
parameters included in Table 2 were calculated. While
the fractal dimension of the topography was observed to
have no influence on the resulting Hack’s exponent
(correlation of 22.2%), there was strong negative
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Figure 5. (a-h) Hack’s Law plots for the eight networks included in the study. The exponent’s value in each network is shown in the
graph.
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Figure 6. Topography roughness and mean sub-basin slope of
each of the 14 basins plotted on a combined y-axis against Hack’s
exponent of the corresponding networks. Regression lines have
been drawn for each parameter to show the strong inverse

correlations.

correlation between 4 and each of mean sub-basin slope
and topography roughness (correlation of -66.3% and
-73.6%, see Figure 6). For 14 data points, with these
correlation coefficients a direct relationship between
the parameters in question can be stated with
99% confidence. One would expect topography
roughness and mean basin slope to be closely
correlated, and therefore have similar correlation with
other parameters. Thus in rough areas, where basins
are relatively steep, the value of h for the combined
short-range and randomness regimes is lower than
in smoother landscapes with gently sloping river
basins.

The next step in the analysis is to separate the two
regimes from each other. To do this a statistical analysis
was performed. From the Hack’s Law plots (Figure 5)
one can see the threshold between the two regimes is
somewhere between values of 5 and 8 for the logarithm

of basin area. For each basin this threshold was varied
between these values in steps of 0.01, and the ordered
pairs separated into two sets. The slope of the
logarithmic plot, corresponding to h, and the slope
uncertainty was computed for basins on either side of
the threshold value. The threshold value for which the
average of the two slope uncertainties was smallest was
assumed to represent the real threshold for that
particular network. These thresholds, as well as values
for h and their uncertainties for basins in each regime,
are given in Table 3. These values were then compared
with the properties of the topography that the river basin
drains: mean slope, roughness and fractal dimension
(included in Table 2). As with the overall value for h, the
fractal dimension has no correlation with the exponent.
The roughness presents an interesting picture (Figure 7):
the short-range regime data shows an inverse correlation
between b and the roughness (correlation coefficient of
80.1%, so the regression can be stated with 99%
confidence). The randomness regime, made up of sub-
basins with drainage areas above the given threshold,
shows a weak positive regression between h and the
roughness. The correlation coefficient here has a much
lower value of 32.6%, which puts it outside the 90%
confidence interval. It is interesting that the values of
I in the randomness regime are mostly between 0.5 and
0.6, with an average of 0.55. When we recall that
d usually fluctuates between 1.0 and 1.2, with a
typical value of 1.1 (eq. 4), it is possible that basins in
this regime approach self-similar shapes (D = d/h = 2).
To verify this suggestion it would be necessary to
investigate the variations in d for these basins — this is
beyond the scope of this study, but is certainly worth
pursuing. The correlations of h with slope are similar,
but weaker than ones with roughness, as was the case
with entire basins (Figure 6). The plot of the best-fit
threshold as a function of topography roughness is
shown in Figure 8. The parameters seem independent of
each other, though the three basins with the smoothest
topographies (Nossob, Molopo and Vaal) also have the
thresholds at smallest areas.

Table 2. Parameters of networks examined in this study. Basin area in sq. km, slope in m/km

River log (@) b mean sub-basin slope D R

Vaal 12.0 0.702 + 0.011 4.41 + 2.90 2.18 £ 0.27 16.4 £ 1.28
Upper Orange 11.5 0.644 £ 0.015 7.94 £ 6.78 231 +0.15 17.8 + 1.49
Hartebeest 11.6 0.671 + 0.012 422 + 245 2.22 £ 0.19 16.5 £ 1.58
Fish 11.6 0.687 + 0.012 556 £ 4.15 224 £ 0.19 16.9 + 1.73
Nossob 12.1 0.714 £ 0.012 1.60 + 1.47 2.30 £ 0.25 14.1 £ 1.66
Molopo 11.9 0.692 + 0.010 2.03 + 1.60 2.13 £ 0.23 14.9 £ 1.96
Olifants 11.2 0.664 + 0.018 9.02 + 7.64 2.24 +0.18 18.2 + 1.61
Gourits 10.9 0.610 + 0.021 11.44 + 8.31 2.16 £ 0.20 19.2 £ 1.54
Gamtoos 10.6 0.662 + 0.027 6.35 + 4.15 222+ 0.19 18.3 + 1.26
Sundays 10.2 0.585 + 0.032 10.24 + 621 2.21 + 0.17 18.7 + 1.25
Great Fish 10.5 0.644 + 0.024 9.80 + 6.29 2.25 £ 0.15 18.8 + 1.18
Kei 10.0 0.654 + 0.029 14.03 + 10.05 2.29 + 0.16 189 + 0.93
Elands 11.5 0.680 = 0.016 7.91 + 7.54 2.19 £ 0.20 17.8 + 1.78
Upper Limpopo 12.0 0.630 £ 0.010 4.86 + 3.15 217 +£0.21 16.9 + 1.36
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Table 3. Hack's exponent for basin on either side of the best-fit
threshold. Threshold given as log (area in sq. km)

Basin h (short range) h (random) area

threshold
Vaal 0.811 + 0.021 0.583 + 0.022 6.19
Upper Orange  0.683 £ 0.026 0.586 + 0.029 6.61
Hartebeest 0.751 £ 0.017 0.510 + 0.023 7.30
Fish 0.776 + 0.019 0.549 + 0.026 6.72
Nossob 0.881 + 0.027 0.523 + 0.027 5.79
Molopo 0.819 + 0.021 0.509 #+ 0.021 6.23
Olifants 0.688 + 0.036 0.579 £ 0.032 6.45
Gourits 0.726 + 0.043 0.481 + 0.030 6.55
Gamtoos 0.687 + 0.043 0.565 + 0.043 7.29
Sundays 0.576 £ 0.006 0.572 £ 0.061 6.75
Great Fish 0.686 + 0.035 0.659 + 0.039 7.33
Kei 0.689 + 0.054 0.538 + 0.067 7.28
Elands 0.757 £ 0.024 0.543 + 0.033 7.32
Upper Limpopo  0.671 £ 0.015 0.544 + 0.026 7.33

Figure 7. Hack’s exponents for the 14 sub-network data separated
into the short range regime (squares) and ‘randomness’ (stars).
Regression line of the short range regime results shows the strong
inverse correlation, while random regime results are independent

of roughness.

We therefore conclude that in the short-range regime
the scaling parameter h is dependant on the roughness
of the topography — at smaller scales it is negatively
correlated with the roughness. When basin reach the
size of a certain threshold (around 400 km* in very
smooth topographies, but often over 1000 km?), a new
regime is entered and a weak positive regression is
observed. This latter regression in not conclusive, and
there is a possibility of basins in that regime being self-
similar. As the short-range regime contains more data
points than the randomness one, when the 2 regimes are
combined (Figure 6) the prevailing trend is that of the
short-range regime.

Hill-slope Regime
As was mentioned earlier, the DEM resolution was not
sufficient to study the hill-slope run-off patterns in linear

Figure 8. Best-fit area threshold as a function of basin’s

topography roughness.

mountain belts. Three setting where such drainage can
be observed were identified (Figure 9). The Cape Fold
Belt (CFB, setting 1) was already discussed, with its
schematic drainage shown in Figure 4. Eight individual
linear sections were identified there. Similar pattern are
observed in the valleys cut into the basalt highlands in
Lesotho (setting 2 — eight sections analysed here).
The simplified structure of that setting is shown in Figure
10. The figure also shows parallel streams draining
setting 3 — linear sections of the Drakensberg
Escarpment, where five such sections were identified.
It should be remembered that all 21 sections drain the
same side of the particular mountain range.

In each locality the mean spacing of adjacent streams
(8 was computed. Other parameters were also
assembled, such as the mean slope of the drained
mountainside. The half-width of the mountain belt (W —
defined as the mean distance between the watershed
and the trunk stream parallel to it, see Figure 3) and
mean height (b) of the watershed above this trunk
stream in settings (1) and (2). As the valleys in Lesotho
become wider downstream, the mountain belt width is
given as a range, as is the watershed’s height above the
valley. The escarpment drainage on the eastern side of
the Drakensberg watershed is a little problematic. What
was described as the half-width of ranges in the other
settings was impossible to describe or measure here, as
there is no convenient trunk stream parallel to the
mountain range. All the measurements are presented in
Table 4.

From the data in Table 4 one can see there is no
suggestive correlation in any setting between spacing in
an individual locality and any parameter included in this
table. It does, however, appear that the spacing is
consistently larger in the CFB than in the other settings.
The mean of the 155 spacings in the CFB is 1.86 km,
with a standard deviation of 0.74 km. From the
Drakensberg escarpment 62 spacings were obtained,
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Figure 9. Location of linear mountain belts used in the study. Cape Fold Belt ranges (setting 1) on top, Lesotho Highland streams
(setting 2) and linear section of the Drakensberg Escarpment (setting 3) at the bottom. The black curve on the bottom figure marks the

border of Lesotho. In the east this coincides with the watershed between headwaters of the Orange and drainage into the Indian Ocean.
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Table 4. Linear belt stream spacing parameters. n is the number of spacings at each locality.
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Locality Setting n S (km) slope (m/km) h (m) W (km)
Blouberg CFB 18 1.63 + 0.47 110 300 2.8
Groot-Winterhoek CFB 30 1.83 + 0.51 160 690 4.3
Kareedouwberg CFB 12 1.90 + 0.78 140 490 3.5
Suuranysberg CFB 15 2.20 + 0.78 160 440 2.7
Baviaanskloof CFB 20 1.83 £ 0.67 170 890 5.2
Swartbergl CFB 22 1.75 + 0.69 160 720 4.5
Swartberg2 CFB 20 2.35 + 0.96 200 1100 5.5
Langeberg CFB 18 1.51 £ 0.85 230 620 2.6
Sehonghong Lesotho 12 1.65 £ 0.38 140 400-1100 3-8
Mashai Lesotho 14 1.64 + 0.58 150 300-600 2-4
Khubelu Lesotho 16 1.48 £ 0.37 140 500-700 4-5
Moremoholo Lesotho 10 1.55 + 0.28 140 400-700 3-5
Semenanyane Lesotho 11 1.39 £ 0.36 130 400-600 3-5
Mokhotlong Lesotho 13 1.62 £ 0.35 150 600-800 4-5
Mantsonyane Lesotho 10 1.23 + 0.34 100 300-500 3-5
Mokhabong Lesotho 12 1.52 + 0.49 80 200-400 3-5
Mount Amery Escarpment 11 1.52 + 0.63 400

Popple Peak Escarpment 11 1.18 + 0.46 270

Giant’s Castle Escarpment 13 1.54 £ 0.41 290

Mzimkulu Pass Escarpment 15 1.25 + 0.47 270

Mount Fred Escarpment 12 1.52 + 0.49 150

Figure 10. Schematic figure of the two drainage types of the

Drakensberg Basalts (see text for further explanation).

their mean being 1.40 km, with a standard deviation of
0.52 km, while the 98 spacings in Lesotho gave a mean
value of 1.52 + 0.41 km. Thus it seems that the spacing
of streams in the Lesotho valleys and the Drakensberg
escarpment (which have the same underlying rock-type,
but different geomorphology) have similar distribution,
which is different to that observed in the CFB. Thus the
only factor which controls the stream spacing in linear
mountain belts is the underlying geology.

The standard deviations associated with these mean
spacings seem large. They are, however, similar to the
deviations observed at all individual localities (Table 4).
As parameters like joint spacing, soil, vegetation and
climate cannot be expected to vary significantly on a
single side of single mountain range, we must conclude
that the variations in the spacing are random. Thus while

hill-slope regime of Hack’s Law, with the value of the
exponent 1 very close to 1, exists in different mountain
settings, there are considerable random fluctuations
around this distribution. Furthermore, the constant, ¢, in
the equation (2) is determined by regional rock-type of
the mountains concerned.

Discussion

Our analysis of river basins in southern Africa showed
that while river networks can be described in terms of
fractal patterns, there exists a large amount of deviation
around these patterns. While some of these deviations
can be explained in terms of geological phenomena
(such as unusually high Horton’s ratios in parallel
mountain belts), others do not have obvious
explanations.

One of the most commonly parameters used to
quantify network geometry is Hack’s exponent, ki, which
relates drainage area to stream length. This exponent
was measured for 14 networks in southern Africa, and
significant differences in its value were observed in
separate basins. Strong inverse correlation of /1 with the
roughness of the topography, as well as with mean sub-
basin slope, was observed. There were, however,
significant deviations from these regressions. The
Sundays and Great Fish rivers, which drain very similar
terrains right next to each other and have virtually the
same roughness, had very different values of h: 0.585
and 0.644. We cannot offer an explanation for similar
basin having significantly different network parameters,
and conclude these, and other differences, are results of
randomness. Alternatively, the difference could be the
result of small variations in initial conditions of basin
formation. If formation of river networks is a complex
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system, and the existence of power laws and thresholds
suggests that it might be, infinitesimal initial differences
could potentially lead to vastly different results as the
system evolves.

We proceeded to investigate how h changes with
scale. We based our analysis on the scaling regime
hypothesis of Dodds and Rothman (2000), which
proposes the existence of four regimes. At the smallest
scales one expects parallel non-convergent streams
flowing down hill slopes. In this case one expects b to
be close to 1, if the basin width remains uniform. This
regime can be best analysed in linear mountain belts,
examples of which can be found in the Cape Fold Belt,
Lesotho Highlands, and Drakensberg Escarpment.
We found that separation of these streams
(corresponding to basin width) depends on the
underlying rock type and/or structure (e.g. joint
patterns). Once again, there were significant deviations
associated with the distribution of basin width, which
presently we can only attribute to randomness.

Once streams begin to converge, a regime termed
‘short range’ is entered, and at even larger scales the
existence of ‘randomness’ regime has been
hypothesised. Our results showed a clearly visible
threshold between these regimes. The exact position of
this threshold varied between basins — in ones with
smooth topography it is as low as 400 km? but in others
over 1000 km’ Hack’s exponent for the sub-basins
smaller than the threshold (short range regime) are very
strongly inversely correlated with roughness of the
topography, while the larger ones (randomness regime)
appear independent of roughness, and mostly had
values of h between 0.5 and 0.6. These values
correspond to self-similar basin shapes, but a detailed
analysis of individual streams’ fractality is necessary
before any robust conclusions can be made. As there are
many more basins in the short-range than the
randomness regime, the h-roughness correlation for
the combined data is inherited from the stronger
h-roughness relationship in the short-range regime.

The hypothesis of Dodds and Rothman (2000)
suggests a fourth regime of continental scale basins,
which these authors suggest would be self similar. Our
presented study area is not large enough to study
continental-scale rivers, but it is very interesting to note
that our randomness regime basins could be self-similar,
and may therefore be part of the maximal, continental
regime. Southern Africa is a unique section of a
tectonically unique continent (Holmes, 1965; Doucouré
and de Wit, 2003), and it should not be surprising if
mechanism responsible for the formation of its basins
were different than those on other continents.
A continental scale analysis of African rivers is in
preparation.
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