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[1] Africa is tectonically and hypsometrically different to all other continents and therefore provides a
unique natural laboratory for the study of river network geometry. Southern Africa is one of the more
unusual geomorphological regions of this continent, hence our interest in the geometry of the rivers
draining this region. The 14 river basins analyzed here come from the larger networks of the Orange and
Limpopo rivers, as well as from the southernmost section of the continent where rivers meander through an
exhumed belt of folded Paleozoic mountains. Basic scaling laws, such as Horton’s laws and Hack’s law,
hold for the rivers studied here, but the parameters governing these relationships vary between networks. A
strong inverse correlation between Horton’s ratio of stream numbers and mean source stream slope is
observed. We believe this is the first time such a relation has been reported. Horton’s ratio of basin areas is
proportional to that of stream numbers but always greater than it; this contradicts existing models that
equate the two parameters. An expression for the ratio of stream lengths in terms of the ratio of stream
numbers is derived theoretically and verified for the available data. The parameter governing Hack’s law,
h, varies not only between networks but also with scale inside each network. Existing models provide up to
four scaling regimes. Given the spatial resolution of this study, the two regimes at the middle scales are
visible here. These are termed the short-range and randomness regimes, with a crossover occurring at a
drainage area of approximately 800 km2. The values for h in the smaller short-range regime have an
inverse correlation with the roughness of the topography. Observed values for h imply basins appear more
elongated with increasing area; this would be more pronounced in rivers draining a smooth topography. In
the randomness regime the values of h are lower, mostly between 0.5 and 0.6, with a weak positive
correlation to topography roughness. This range of h corresponds to self-similar basins, but a more detailed
analysis of individual stream fractality is necessary before such a conclusion can be made.
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1. Introduction to African Topography

[2] Africa (Figure 1) has a unique topography.
While elevated regions of other continents can be
usually related to tectonic uplift linked to horizon-
tal convergent plate tectonic forces, Africa is host
to some of the world’s greatest elevated regions

despite being mostly (>90%) surrounded by diver-
gent plate margins, and its upper crust being
predominantly in a state of extensional stress
[Zoback et al., 1989; Coblentz and Sandiford,
1994]. The only high elevation region in Africa
related to convergent plate boundary stresses is the
Atlas mountains in northwest Africa [Frizon de
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Lamotte et al., 2000]. Africa’s anomalous conti-
nental-scale geomorphology was first pointed out
by Holmes [1944], who termed it the ‘‘basin and
swell structure.’’ Furthermore, Africa’s topography
is distinctly bimodal, with central and west Africa
being more smooth and low-lying (mostly <500 m)
than the southern and eastern sections of the con-
tinent which are generally higher that 1000 m [e.g.,
Brown and Gilder, 1980]. Doucouré and de Wit
[2003] computed a histogram of Africa’s elevation
(their Figure 3a, modified here as inset in Figure 1),
on which 2 peaks corresponding to heights of
�600 and 1000 m are clear to see. This demon-
strates the bimodality statistically. The age and the
origin of this topography is a subject of some

controversy. Some believe all these features to be
Cenozoic in age [e.g., Buckle, 1978; Burke, 1996;
Partridge and Maud, 1987], relating to mantle
upwellings [e.g., Burke, 1996; Lithgow-Bertelloni
and Silver, 1998]. Others acknowledge the influ-
ence of paleo-horizontal plate tectonic forces in
formations of these features [e.g., Fairhead, 1988;
Sahagian, 1988]. A gravity anomaly study by
Doucouré and de Wit [2003] suggests that both
strong topographic bimodality and basin and swell
structures were already present in the Cretaceous.

[3] In the absence of significant Mesozoic-
Cenozoic orogenic uplift, Africa’s epeirogenic
topography might be expected to produce river

Figure 1. Topography of the African continent. Note the bimodality: the southern and eastern sections are much
higher than the central and western parts. A number of basins can also be seen, the Congo and Chad being the most
prominent ones. This figure, as well as Figure 5, was constructed using data from the USGS Web site: http://
edcdaac.usgs.gov/gtopo30/gtopo30.html. Inset: Elevation frequency histogram based on Figure 3a of Doucouré and
de Wit [2003].
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networks different to ones on all other continents,
and it does (Figure 2). A number of rivers flow
away from the coast they are closest to, and what
would appear to have been the logical outlet (e.g.,
Niger, Zambezi, Orange). These have been sug-
gested to be plume-related drainages formed above
mantle hot spots (e.g., hot upwelling mantle [Cox,
1989]). There are a number of plume-related failed
rifts in Africa, and these often become major river
valleys (e.g., the Benue tributary of the Niger in
Central Africa and the Limpopo river in southern
Africa). Africa thus presents a fascinating natural
laboratory of river networks apparently different to
anywhere else in the world. A number of basins
are landlocked (Okavango and Chad being the
largest ones, and the Congo basin until recently
(J. Stankiewicz and M. J. de Wit, The east-flowing
Congo River and implications for the evolution of
African River Basins, submitted to Journal of
African Earth Sciences, 2005)), though this is
not unique to Africa (e.g., Caspian Sea).

[4] In this study we concentrate on the southern
section of the African continent, perhaps the more

unusual part of the bimodal topography [Doucouré
and de Wit, 2003]. We investigate how the unique
landscape and bedrock structure of the region
affects the self-organization of river networks
draining the subcontinent.

2. Drainage Systems of Southern Africa

[5] One way to illustrate the distribution of topog-
raphy elevation is by plotting hypsometric func-
tions. These express what percentage of the surface
area is above a given elevation. It is convenient to
deviate from convention and plot the independent
variable (elevation) of the vertical axis; that way
the curve can be thought of as an average maximal
river profile that would drain the topography.
Figure 3 shows the hypsometric curves for the
entire Africa (black), southern Africa (blue), and
an approximate curve usually found on other con-
tinents (red, from Figure 25 of Burke [1996]). It
has been often mentioned in literature that the
curve for Africa is mostly above the curve for
other continents [e.g., Cogley, 1987; Burke, 1996].

Figure 2. Largest drainage basins in Africa. Note that two of them (Chad and Okavango) are landlocked. This
figure was constructed using the CIGCES African river database based on digitized maps from De Beers Group,
Centurion.
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From the figure presented here, it appears that this
anomaly is mostly due to the high topography in
southern Africa, hence our interest in that section
of the continent.

[6] One of the main features of the region’s geo-
morphology can be seen by looking at the drainage
map of southern Africa (Figure 4): the Great
Escarpment, stretching from the Atlantic coast near
Namibia, to the Limpopo basin near the boundaries
of South Africa with Zimbabwe and Moçambique,
in an arc approximately 200 km from the coast. All
the drainage inland of this divide eventually joins
either the Orange or the Limpopo rivers and enters

the Atlantic at Oranjemund or the Indian Ocean
near Xai-Xai, respectively (Figure 4).

[7] The Orange is the major river in the region;
it is the fifth largest river in Africa, both in terms
of mainstream length (2150 km) and drainage
area (1,040,000 km2). Its major tributaries drain
different geological and climatic terrains. Large
part of the drainage comes from the Orange-
Vaal system sources in high ground inland of
the Drakensberg escarpment. This high ground
(reaching 3482 m at its highest point, Thabana
Ntlenyana in Lesotho) has been suggested to be
inherited from a deep mantle plume at �180 Ma
just prior to the breakup of Gondwana [White
and McKenzie, 1989]. The fact that the Orange
has its sources just 150 km west of the Indian
Ocean, but flows to the Atlantic 1400 km away,
has been seen as a case of drainage away from the
new (Indian) ocean, supporting this paleo-plume
hypothesis [Cox, 1989]. The second largest river
in the area, the Limpopo, flows through a similar
geological terrain, but in the opposite direction,
reaching the Indian Ocean through a delta in
Moçambique. Cox [1989] suggests that the Lim-
popo drainage is rift-inherited, related to the failed
spreading axis in the Kalahari postulated by
Reeves [1972, 1978]. Du Toit [1933] suggested
that the Limpopo was originally linked with the
Okavango, a theory supported by Wellington
[1955] who attributed the drainage evolution to
stream capture.

Figure 3. Hypsometric curves for Africa (black) and
southern Africa (blue) and approximate curve for other
continents (red [from Burke, 1996]).

Figure 4. Drainage pattern of southern Africa, from the CIGCES African river database. Pale blue line marks the
Great Escarpment. Inset shows the countries in the region: N, Namibia; B, Botswana; Z, Zimbabwe; M,
Moçambique; S, Swaziland; L, Lesotho; SA, South Africa.
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[8] The Fish River flows south through the arid
Namibia, and the only perennial part of the net-
work is the few kilometers upstream from its
confluence with the Orange. The most dramatic
feature of this network is the famous Fish River
Canyon in the river’s lower reaches. There the river
has cut into the horizontal quartzitic sandstones
and shales of the Eocambrian Nama Group (500–
700 Ma) to reach the underlying Precambrian
schist and granite gneiss of the Namaqua complex
(1000–1200 Ma [Buckle, 1978]). In places the
canyon is over 500 m deep.

[9] The Molopo and Nossob rivers drain (techni-
cally speaking) the Kalahari basin. Neither network
has a record of permanent flow during living
human history [Bootsman, 1997]. When water is
transported in the channels, overland flow never
reaches the Orange river; transport takes place by
groundwater. The two networks are therefore not
strictly tributaries of the Orange, but have been
included in the analysis nonetheless. The presence
of river terraces indicates that both these rivers
were perennial in past history during more fluvial
stages of the recent southern African climate [de
Wit, 1993].

[10] The Hartebees River, also known as Sak
River, is the last major tributary included here. Its
headwaters drain north from the southwestern edge
of the Great Escarpment across Permian Upper
Ecca and Lower Beaufort Group sandstones and
shales intruded by thick Jurassic mafic sills. Most

of this network is also nonperennial, but as with the
Molopo and Nossob, the presence of terraces
suggests this has not always been the case. On
these terraces there are today a number of ‘‘vleis’’
(local name for wetlands) that characterize the
river. Fossil evidence further indicates that as
recently as the Middle Miocene (10–15 Ma) the
Hartebees flowed through a wet and wooded
environment [de Wit, 1990, 1993].

[11] The zone between the escarpment and the
ocean is drained by rivers approximately perpen-
dicular to the divide. Of the rivers in that band six
are of particular interest in this study. They are the
Olifants, Gourits, Gamtoos, Sundays, Great Fish
and Kei. To reach the coast on their way down
from the Great Escarpment they cross a band of
mountains ranges known as the Cape Fold Belt
(Figure 5). This is the only place in the subconti-
nent where relatively young fossil mountain ranges
(�250 Ma) related to horizontal compressional
tectonics are found. The mountains in the belt
reach over 2000 m in places, with Seweweekspoort
Peak in the Swartberg being the highest point at
2324 m. Other ranges in the belt are the Cederberg,
Hex River Mountains, Langeberg and many other
smaller ranges. The precursors of these ranges
formed during extensive thrusting and folding at
�250 Ma, before they were covered by a substan-
tial thickness of sediment in the Jurassic, and then
exhumed again since then [Tinker and de Wit,
2004]. Major rivers predating this exhumation

Figure 5. Topography of the Cape Fold Belt and its surroundings.
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meander through these mountains. The new river
segments have formed in the weaker shale-domi-
nated valleys, leaving the hard Table Mountain
Sandstones (often quartzites) as vertical ridges.
Lower-order streams then flow down these steep
ridges to join the main (higher-order) stream,
resulting in a trellis pattern. This environment is
not found anywhere else in southern Africa, hence
our interest in how and why river network geom-
etry differs between this and other areas.

3. Fractal River Networks

[12] The scale invariance of geological phenomena
is one of the first things taught to earth science
students. In geological photographs a scale defin-
ing object, like a coin or a person, needs to be
placed to give an idea of the object’s size. For
example, given a photograph of a fold without such
an object it might be impossible to determine
whether it covers 10 cm or 10 km. Objects that
have similar properties over a large spectrum of
sizes are said to be self-similar over that range. One
example of such objects, a coastline, was used by
Mandelbrot [1967] as he created the concept of
fractals.

[13] Mandelbrot [1983] went on to show that these
fractals abound in nature. Turcotte [1992] showed
how geology and geophysics are full of such self-
similar phenomena. Dodds and Rothman [1999]
start their study with a claim that if scaling laws
abound in nature, river networks stand as an
epitome of the phenomenon, as also highlighted

by Rodriguez-Iturbe and Rinaldo [1997]. Here we
first show how rivers can be thought of as fractals,
and present the commonly used scaling laws gov-
erning their geometry.

3.1. Stream Ordering and Horton’s Ratios

[14] A basic tool used in an analysis of river net-
works is stream ordering. The most widely used
scheme was developed by Strahler [1957], who
based it on a scheme of Horton [1945]. In this
scheme all stream segments are attached a positive
integer number, w, with higher order implying a
larger stream. All source streams (from the source to
the first confluence) are given orderw= 1.When two
or more streams join, the stream segment down-
stream from the confluence is assigned the highest of
the orders of the contributing streams. If there is
more than one highest-order stream, the downstream
segment is given order one higher than that highest
order. This scheme is illustrated in Figure 6. This
figure also shows the basicmeasurable parameters of
a drainage basin. These include the drainage area a
marked out by the watersheds of the basin, the
mainstream length l in the basin, the length of the
basin, L, and its width, L?. The stream reaching
the outlet of the network obviously has the highest
order; this is labeled W and is also used to describe
the order of the network. Some anomalies can arise
if the stream length is not defined explicitly.
Horton’s original study measured the length of an
w order stream from its formation (confluence of
two w � 1 streams) to the origin of the w + 1
stream or the outlet, should w = W. These are
referred to as stream segments. Alternatively,

Figure 6. Horton-Strahler ordering scheme and basic basin parameters illustrated on a schematic network.
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mainstream lengths (from the origin of the lowest-
order stream to the end of the w segment) can be
used. Here we used the latter method, as the
mainstream lengths gave better correlations than
stream segments (see section 4.1).

[15] After a particular network has been ordered
using the above scheme, it is possible to calculate
the number of streams of a particular order, n, as well
as the average stream length and basin area of a given
order stream. Horton [1945] defined three ratios
relating to how these quantities change with order:

Rn wð Þ ¼ n wð Þ
n wþ 1ð Þ ; ð1aÞ

Rl wð Þ ¼ l wþ 1ð Þ
l wð Þ ; ð1bÞ

Ra wð Þ ¼ a wþ 1ð Þ
a wð Þ : ð1cÞ

Note that the ratios are defined so that they are all
greater than unity. Horton also found that all the
ratios are independent of the order w; this would be
a requirement for a network to be self-similar.
Thus, for example,

a wð Þ ¼ Rað Þw�1
* a w ¼ 1ð Þ; ð2aÞ

and therefore

log a wð Þ½ 	 ¼ log a w ¼ 1ð Þ½ 	 þ w� 1ð Þ log Rað Þ: ð2bÞ

Thus plotting mean basin area of a given order on a
logarithmic axis as a function of the order will
yield a straight line with slope log (Ra). This
technique will be used to determine Horton’s ratios
later on in this study.

[16] Typical values for Rl are between 1.5 and 3.0,
and for Ra and Rn between 3.0 and 5.0, though
Ra values up to 6.0 have been reported [e.g.,
Abrahams, 1984; Dodds and Rothman, 1999].
Values for Ra and Rn are often similar; in fact,
Peckham [1995] suggested that for self-similar net-
works an identity Ra 
 Rn holds. This identity was
mathematically derived by Dodds and Rothman
[1999] using the assumptions of uniform drainage
density, and network and stream self-similarity.

3.2. Tokunaga’s Ratios

[17] While Horton’s ratios can be used to check for
self-similarity, and conclusions about real networks
can be drawn from the values of Horton’s ratios
and deviations from them, these ratios do not paint

a full picture. All information about low-order
streams feeding higher-order streams is lost. To
rectify this, Tokunaga [1966, 1978, 1984] devel-
oped a more detailed way of studying network
geometry. Using the Horton-Strahler scheme, T(w1,
w2), where w1 > w2, is defined to represent the
average number of side tributaries of order w2

feeding a stream of order w1. For self-similar net-
works first we have

T w1;w2ð Þ ¼ T w1 � w2ð Þ ¼ T nð Þ: ð3Þ

In other words, T is independent of order and is not
a function of two variables (w1 and w2), but of just
one variable: the difference between the two
orders. Tokunaga’s law goes further and states that

T nð Þ ¼ T1 RTð Þn�1: ð4aÞ

The two network-dependant parameters, T1 and RT,
can be obtained by plotting logarithms of the ratios
T(n) as a function of n � 1, as

logT nð Þ ¼ logT1 þ n� 1ð Þ logRT : ð4bÞ

The slope of this graph corresponds to the log (RT),
and the intercept to log (T1). Dodds and Rothman
[1999] show it is possible to express T1 and RT in
terms of Horton’s ratios:

RT ¼ Rl; ð5Þ

T1 ¼ Ra � Rl � 2þ 2Rl=Ra: ð6Þ

3.3. Hack’s Law

[18] An important network geometry scaling law
concerns the relationship between stream length, l,
and drainage area, a. This was first investigated by
Hack [1957], who found that

l ¼ cah; ð7Þ

where c is constant of proportionality, and h the
scaling exponent, which he found to be approxi-
mately 0.6. From a naive geometrical perspective,
one would expect this constant to be 1

�
2. Nearly

50 years after Hack’s original study, there is still
considerable debate about whether the exponent is,
or should be, 1

�
2. Ijjasz-Vasquez et al. [1993] show

that deviations from h = 1
�
2 represent a deviation

from self-similarity. Rigon et al. [1998] show that
networks with h = 1

�
2 are ‘‘far from realistic’’, and

quote a value of h between 0.56 and 0.58 for
what they term ‘‘feasible’’ networks. Dodds and
Rothman [2000] follow up a suggestion byMueller
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[1973] that inside a network h changes with scale,
and they present a ‘‘scaling regime model’’, with
up to 4 scaling regimes. In each of these regimes
controls on basin formation are different, and a
different value of h should be expected.

[19] The interpretation of the parameters in equa-
tion (7) might be of interest. Traditionally, each
basin and its subbasins in a network were treated as
a data point, and plotted on a logarithmic graph of
l as a function of a. This was the method used by
Hack [1957]. An interesting variation is presented
by Pelletier [1999], who computes the average
stream length and drainage area of all basins of a
given order in a network. This results in a number
of data points equal to the order W of the network.

3.4. Other Scaling Laws and Parameters

[20] One scaling relation that should be mentioned
is between the basin’s length and its mainstream
length:

l � Ld : ð8Þ

This might appear to be a fairly insignificant
relation, especially as d is almost always 1.1
[Maritan et al., 1996]. However, Dodds and
Rothman [2000] show that many river networks
can be characterized by universality classes defined
by just two parameters: h and d.

[21] There are other parameters which can be
calculated for each basin. These include the mean
slope of the mainstream (s), and the relief of the
basin (r) defined as the difference in elevation
between the highest and lowest point. Tarboton et
al. [1989] investigated the relationship between
basin slope and drainage area for 2 basins in
North America. The basin areas they used were
between 0.2 and 3,000 km2. These authors found
too much scatter when each basin was considered
as a data point, and therefore they averaged data
from basins with similar areas. Each such bin
contained at least 20 individual basins. From this
averaged data, they concluded that there exists a
power law relationship between the two, albeit
with a lot of deviations:

s � ax; ð9Þ

where x has a value of very close to �1
�
2. Pelletier

[1999], once again averaging all basins of a specific
order, also finds the power law (9) to hold, but for
most of the networks in his study the value of x is
between �0.34 and �0.41. The basins in his study
vary in size from 0.01 to 10,000 km2, i.e., a much

greater range than Tarboton et al. [1989]. Interest-
ingly, the results of those studies, as well as of more
recent ones [Rodriguez-Iturbe and Rinaldo, 1997;
Schorghofer and Rothman, 2001, 2002], show that
the slope-area relation does not hold at the lowest
scales considered in each of these studies. As these
‘‘lowest scales’’ differ significantly in these ana-
lyses, one is led to believe this is not a real
threshold, but depends on the resolution used.

[22] Pelletier [1999] also investigates the relation-
ship between basin relief and basin area. Once
again, a power law dependence is observed:

r � ay ð10Þ

with the observed value of y between 0.17 and
0.38.

4. Analysis of River Basins in
Southern Africa

[23] Rivers discussed in section 2 were used in this
analysis. In order to have basin sizes of similar
order of magnitude, the 6 subnetworks of the
Orange (Fish, Nossob, Molopo, Vaal, Upper Or-
ange and Hartebees) were treated separately. Sim-
ilarly, the Limpopo was subdivided into Upper
Limpopo and Elands (Figure 4). The 6 Cape Fold
Belt rivers (Olifants, Gourits, Gamtoos, Sundays,
Great Fish and Kei) completed the data set of 14
basins. Their properties are summarized in Table 1.

4.1. Horton’s Ratios

[24] For the analysis a 1 km resolution Digital
Elevation Model (DEM) was used. Flow of water

Table 1. Basic Geometric Properties of the 14 Rivers
Used in This Studya

River
Basin

Area, km2
Main Stream
Length, km W n(w = 2)

Fish 109,000 854 6 367
Nossob 173,000 941 6 588
Molopo 151,000 846 7 485
Vaal 157,000 935 6 503
Upper Orange 102,000 813 6 201
Hartebees 104,000 624 7 318
Olifants 74,000 572 6 157
Gourits 54,000 330 6 110
Gamtoos 41,000 502 5 88
Sundays 27,000 347 5 41
Great Fish 36,000 503 5 70
Kei 23,000 291 5 34
Upper Limpopo 286,000 1292 6 621
Elands 95,000 678 6 202
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over this DEM was modeled, resulting in the
construction of the networks. The first task was
ordering the streams in each network, as discussed
in section 3.1. While first-order basins were
identified, the length of the stream draining each
such basin, i.e., how far from the watershed the
actual stream starts, could not be guessed [see
Montgomery and Dietrich, 1988]. For this reason,
first-order streams were not used in the analysis,
which started at second-order streams, which were
taken to start at the confluence of first-order
basins. Thus when we talk about source streams
we actually mean second-order streams. It should
be noted that the orders would change if a
different resolution DEM was used.

[25] Following the computation of the network,
Horton’s ratios, and uncertainties in them, were
computed for each of the 14 networks using
equation (2b), and similar ones for other ratios.
Horton’s ratios for stream lengths were computed
separately for stream segments and mainstream
lengths (see section 3.1). At higher orders the
two ratios would be similar, but some anomalies
will occur for low orders. For 13 of the 14 net-
works (Hartebees being the exception) mainstream
lengths had a better correlation coefficient with
order that stream segments did. The average dif-
ference in this correlation was 5%. For this reason
mainstream length were used throughout this study.

[26] The plots of mean area, length and stream
number as functions of order are given in
Figures 7a–7c. The y axis values have been offset
to enable us to plot all 14 functions on one graph.

The individual plots correspond to their position
in Table 1, i.e., from Fish river on top to Elands
at the bottom. The best fit slopes have also been
shown in the graph; these correspond to Horton’s
ratios, which, along with their uncertainties, are
given in Table 2.

[27] Also included in the table are the 2 parameters
related to Tokunaga’s law, T1 and RT. These were
computed by plotting T(w1 � w2) as a function of
(w1 � w2 � 1), as per equation (4b).

[28] From Figure 7 and Table 2 it is clear that there
is no uniform value for any of Horton’s ratios. In
each network Horton’s laws hold, with some small
uncertainties (never exceeding 5% of the ratio’s
value) present. All the mean values, even when the
uncertainties are taken into account, fall into typ-
ical ranges mentioned in section 3.1. There also
exists a strong relationship between Ra and Rn;
this is shown in Figure 8. The stars represent
values measured for the ratios, with the boxes
corresponding to the uncertainties in these values.
The solid line is the identity function, on which
Peckham [1995] showed all points should lie. It is
very interesting to note that all the points lie on one
side of identity, i.e., Ra > Rn. The dash-dot line
shows the best linear fit for the 14 points. The
intercept is small (0.074), in fact is smaller than the
uncertainty associated with it (0.119). This leads us
to conclude that Rn = kRa, with k having an
observed value of 0.864.

[29] This deviation from the theoretical models of
Peckham [1995] and Dodds and Rothman [1999],

Figure 7. Graphs from which Horton’s ratios were obtained: (a) Rn, (b) Ra, and (c) Rl.
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which stipulate an identity, is worth commenting
on. These models assume network self-similarity,
which demands not only the satisfaction of Hor-
ton’s laws, but also the consistence of Tokunaga’s
ratios. Section 4.2 shows the latter have a signif-
icant error associated with them. Furthermore, very
large networks are assumed in the derivations, to
allow certain geometric series to converge. It is
possible that larger networks (or networks used
here with higher resolution DEM) would produce
Horton’s ratios closer to the identity, though the
error coming from Tokunaga’s ratios would still
exist. It is worth repeating that our observed values
fall in the ranges quoted by other studies [e.g.,
Abrahams, 1984], which find Rn between 3 and 5,
and Ra between 3 and 6.

[30] The question of what determines the individ-
ual values of Horton’s ratios is of interest. At first
glance it appears the topography does not play a
role in determining these. The ratios in the 6 Cape
Fold Belt networks vary considerably from each
other; for example, the Gourits, which drains
similar landscapes right next to the Gamtoos, has
ratios which are about two-thirds of those in the
latter. Desert ‘‘draining’’ Molopo and Nossob also
have very different ratios. Convincing correlations
between Horton’s ratios and topography parame-
ters do, however, exist. Figure 9 shows a plot of Rn

as a function of the mean slope of all second-order
streams in the given network. An inverse trend
seems to exist. The correlation coefficient of
51.2% puts the probability of regression being
real at just under 95%. Two outliers are obvious;
these are the Molopo and Hartebees rivers. Inter-
estingly, these are the only networks that have W =
7, despite only having fourth and sixth largest
drainage areas, respectively. As each of these net-
works has just two sixth-order streams, we have

n(w = 6)/n(w = 7) = 2. This anomalously low value
for Rn offsets the regression curve for this ratio;
this can be clearly seen in the third and sixth plots
in Figure 7a. If these points are not taken into
account, the value of Rn for the Molopo would
change from 3.50 ± 0.02 to 3.90 ± 0.01, and for the
Hartebees network from 3.21 ± 0.01 to 3.56 ± 0.01.
These points have been marked as circles in
Figure 9. If these, rather than the original points
are taken into account, the correlation coefficient
goes up to 66.2%, and the inverse dependence of
Rn of the mean source stream slope can be stated
with 99% confidence.

[31] This inverse correlation between Rn and mean
source stream must be treated with caution. It was
shownearlier thatRn�Ra. Furthermore, equation (9)

Table 2. Horton’s Ratios and Tokunaga’s Parameters (With Uncertainties) for the 14 River Networks of This Study

River Rn Rl Ra Rt T1

Fish 4.42 ± 0.00 2.54 ± 0.00 5.10 ± 0.01 2.10 ± 0.03 1.50 ± 0.04
Nossob 4.83 ± 0.01 2.58 ± 0.00 5.26 ± 0.04 2.69 ± 0.07 1.64 ± 0.09
Molopo 3.50 ± 0.02 2.03 ± 0.01 3.76 ± 0.01 1.98 ± 0.03 0.81 ± 0.05
Vaal 4.66 ± 0.01 2.56 ± 0.00 5.11 ± 0.04 2.70 ± 0.09 1.46 ± 0.10
Upper Orange 3.77 ± 0.01 2.40 ± 0.00 4.12 ± 0.04 3.61 ± 0.10 0.62 ± 0.04
Hartebees 3.21 ± 0.01 1.97 ± 0.00 3.53 ± 0.01 1.92 ± 0.01 0.89 ± 0.02
Olifants 3.68 ± 0.04 2.39 ± 0.02 4.42 ± 0.07 1.54 ± 0.16 1.72 ± 0.39
Gourits 3.24 ± 0.03 1.99 ± 0.01 3.91 ± 0.04 1.71 ± 0.10 1.06 ± 0.14
Gamtoos 4.75 ± 0.20 2.92 ± 0.02 5.73 ± 0.11 1.85 ± 0.58 2.71 ± 1.02
Sundays 3.61 ± 0.07 2.33 ± 0.03 4.03 ± 0.07 5.04 ± 1.32 0.49 ± 0.16
Great Fish 4.08 ± 0.00 2.74 ± 0.07 4.68 ± 0.21 3.43 ± 0.34 1.04 ± 0.10
Kei 3.31 ± 0.05 2.28 ± 0.01 3.89 ± 0.01 1.58 ± 0.35 1.01 ± 0.27
Upper Limpopo 4.96 ± 0.00 2.63 ± 0.01 5.35 ± 0.06 2.86 ± 0.11 1.57 ± 0.13
Elands 3.91 ± 0.04 2.37 ± 0.01 4.63 ± 0.06 1.32 ± 0.09 2.30 ± 0.35

Figure 8. Horton’s ratios for stream numbers as a
function of Horton’s ratio for basin areas. Blocks mark
the uncertainty in each value, dashed line is the best fit
regression, and solid line is the identity function.
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inversely correlates basin slope with basin area.
Thus if these three regressions hold, it follows that
Ra is correlatedwith a. This is clearly not possible, as
Horton’s ratios are shown to be scale invariant. The
explanation for this apparent contradiction is that the
slope-area relation (equation (9)) does not hold at
lowest scales. This result, quoted earlier, is also
observed in our study: all basins used here were
grouped in bins of 20 basins. Themean slope of each
bin was plotted against the logarithm of mean basin
area, and a very weak inverse correlation of 22.5%
was observed. When apparent source streams were
removed, the correlation increased to 51.3%. It is
possible that the ratio of stream numbers is deter-
mined by the slope of basins that are too small to
follow the slope area relation. Further research is
currently being done on this point.

[32] Other factors were also examined for possible
correlation with Rn. Source stream basin relief has
a 46.8% correlation coefficient with the ratio. As
one would expect slope and relief to be positively
correlated, this is not surprising, and as the slope
analysis give a better correlation, the slope was
concluded to be a first-order factor. Roughness can
be quantified using spectral methods [Turcotte,
1992]. While the logarithmic plot of the power
spectral density against the wave number has a
slope corresponding to the topography’s fractal
dimension, the y intercept (density value at spec-
ified wave number, 1 cycle km�1 in this case),
corresponds to the roughness. These roughness
values had a 30% correlation with Rl. This might
be considered suggestive, but is definitely not a
first-order dependence. Interestingly, the fractal

dimensions of the topography showed no traces
of correlation with any measured ratio.

[33] Having related Rn to a parameter related to the
topography, and having established a relationship
between Rn and Ra, it remains to see what deter-
mines the value of Rl. To do this, we assume that
Horton’s laws for stream numbers and stream
lengths hold in all networks. We also define a
quantity sw, the total length of stream segments
of order w. Furthermore, let s without a subscript
represent the total length of all stream in the
network. First-order basins are used in the deriva-
tion for completeness, but the reader is reminded
that this analysis only used second-order streams
and above, so s1 in reality represents the sum of
second-order streams, s2 third order, and so on.
Remembering that l(w) and n(w) represent the
mean length and number of stream of given order
w, we have

s1 ¼ l 1ð Þ * n 1ð Þ; ð11Þ

s2 ¼ l 2ð Þ � l 1ð Þ½ 	 * n 2ð Þ ¼ Rll 1ð Þ � l 1ð Þ½ 	 *
n 1ð Þ
Rn

¼ Rl � 1

Rn

� �
* l 1ð Þ * n 1ð Þ½ 	; ð12aÞ

which can be written

s2 ¼
Rl � 1

Rn

� �
* s1 ð12bÞ

and for higher orders, w > 2

sw ¼ l wð Þ � l w� 1ð Þ½ 	 * n wð Þ ¼ Rw�2
l Rl � 1ð Þ * l1 *

n 1ð Þ
Rw�1
n

:

ð13aÞ

This can be expressed in terms of s2 or s1.

sw ¼ Rl

Rn

� �w�2

*
Rl � 1

Rn

� �
* s1 ¼

Rl

Rn

� �w�2

* s2: ð13bÞ

The total stream length can then be expressed as

s ¼
XW
i¼1

si ¼ s1 þ s2 *
XW
i¼2

Rl

Rn

� �i�2

: ð14Þ

As Rl < Rn the terms in the summation are
decreasing. For an infinitely large network this
geometric series has a finite sum:

X1
j¼0

Rl

Rn

� �j

¼ 1

1� Rl

Rn

¼ Rn

Rn � Rl

ð15Þ

Figure 9. Horton’s ratio for stream numbers as a
function of mean second-order stream slope. The two
circles show how Molopo and Hartebees points would
change if the seventh-order point was not taken into
account.
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The assumption of an infinite network is obviously
unrealistic, but the finite sums in the networks
examined here are on average 90% of the right-
hand side of equation (15). For now the right-hand
side of (15) will be substituted into equation (14).
Appendix A shows why this action is justified.
Thus, also using equation (12),

s ¼ s1 * 1þ Rl � 1

Rn
*

Rn

Rn � Rl

� �
¼ s1 *

Rn � 1

Rn � Rl

� �
: ð16Þ

An expression for Rl in terms of Rn can then be
obtained:

Rl ¼ 1� s1
s

� �
*Rn þ

s1
s
: ð17Þ

This expresses Horton’s ratio for stream lengths
in terms of the ratio for stream numbers. As far
as we know, this has not been done before. The
other parameter in the equation is the fraction of
total stream lengths made up from first-order
streams. This fraction is probably not the same
for all networks, but is unlikely to vary much.
Figure 10 shows the plot of Rl values as function
of corresponding Rn. The solid black line
corresponds to the best linear regression curve:
Rl = 0.377 * Rn + 0.903. The dashed line shows
the best fit with the condition of the slope and
the intercept adding up to unity: Rl = 0.467 * Rn +
0.533. This is still an excellent regression; the
sum of squares of individual displacements from
the line is 0.346, compared to 0.304 for the best
fit without the added constraint. Taking the
correction from Appendix A into account, this
shows that about 56% of all stream lengths are
made up of source streams. A simple calculation
shows that in the 14 networks 57 ± 3% was made
up of the lowest-order streams.

[34] We have thus related the 3 Horton’s ratios.
The stream number’s ratio shows dependence on
mean source stream slope. The steeper these
basins are, the lower the ratio will be. The ratio
for drainage areas is linearly dependant on that
for stream numbers. They do not appear to be
equal, as Peckham [1995] showed should be the
case for perfect fractal patterns, instead Ra =
1.16 * Rn. This might explains why the observed
range for Ra is larger than that for Rn [Abrahams,
1984]. This would clearly be impossible if the
two always had equal values. Last, a function
defining the stream length ratio as a function of
stream number ratio was derived. A parameter
defined as the fraction of total stream length
contributed by source streams appears in that
function; further research will be necessary to

find out whether that first-order contribution is a
constant.

4.2. Tokunaga’s Ratios

[35] The parameters relating to Tokunaga’s law,
RT and T1, also vary from network to network
(Table 1). The uncertainties associated with them
are always larger than those associated with
Horton’s ratios in the particular network. Most
of the time these errors are still small, but in some
networks, like Gamtoos or Sundays, the error is
very large, and it is clear that in these networks
Tokunaga’s law does not hold.

[36] The fact that Tokunaga’s law is not observed
in these basins could just be a result of the basins
being too small, and there not being enough data to
produce statistically viable results. Alternatively,
those deviations could represent real phenomena. It
was mentioned earlier that these river need to cross
the Cape Fold Belt mountains to reach the Ocean.
These mountains consist of steep parallel quartzite
ridges separated by broad soft shale valleys. The
main trunk streams of the network naturally form
in the shale valleys, with short streams draining the
mountainside feeding them (Figure 11). If the
valleys are very long, as many of them are, this
will lead to anomalies in stream numbers, causing
anomalies in Tokunaga’s ratios. These anomalies
would thus be inherited from litho-tectonic terrain
parameters.

[37] In other networks studied here, the values for
RT and T1 are well constrained, and are not far

Figure 10. Horton’s ratio for stream lengths as a
function of Horton’s ratio for stream numbers. Solid line
shows the best fit regression; the dashed line is the best
fit with the constraint of slope and y intercept adding
to 1.
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away from their expected expressions in terms of
Horton’s ratios (right-hand sides of equations (5)
and (6)). These are shown in Figures 12 and 13,
where the ratios of left-hand side to right-hand side
of (5) and (6) are plotted as a function of the
network’s drainage area. From these graphs it
appears that the 2 identities hold for basins above
a given size, in this case log(a) � 11.5 or a �
100,000 km2. A study from a more detailed DEM

would be necessary to state whether this limit is
real, or if the aforementioned lithologic and struc-
tural controls cause deviations.

4.3. Hack’s Law

[38] The stream length, l, of all basins in the 14
networks as a function of the corresponding basin
area, a, is shown on logarithmic axes in Figure 14.

Figure 11. (a) Schematic drainage pattern between two parallel mountain ranges, similar to the pattern found in the
Cape Fold Belt. Low-order streams (w) drain the hard quartzite ridges into the order w + 1 trunk stream in the shale
valley, which in turn drains into the main stream (order W) which crosses the mountain belt. Such a drainage pattern
will produce larger uncertainties associated with Horton’s ratios and would not be expected to obey Tokunaga’s law.
(b) A schematic cross section through the area illustrated in Figure 11a. (c) Portion of a geological map [South
African Geological Survey, 1979] of the Swartberg area in the Gourits River drainage basin. The pattern in
Figures 11a and 11b is shown; two rivers (marked in green) drain in opposite directions in the shale valley (blue)
and are fed by streams draining quartzite and sandstone ridges (different shades of purple) that bind the valley.
Yellow represents aeolian sands.
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The best fit slope corresponds to the Hack’s
exponent for the combined data, and the measured
value is h = 0.666. This corresponds exactly to
h = 2

�
3 measured in the random walk model of

Scheidegger [1967]. One notices that the graph
is slightly convex, which indicates that the value
for h is not constant, but decreases with size.
The analysis of plots for individual networks
(Figure 15) shows that this change is not gradual,
but abrupt at a particular threshold. This brings us
back to the concept of scaling regimes. Dodds and
Rothman [2000] suggest networks consist of up to
4 regimes and, for each, Hack’s law holds with a
different exponent. The regimes they identified
were as follows:

[39] 1. Hillslopes: The smallest basins belong to
nonconvergent streams running down hillslopes.

This regime will be more pronounced in areas that
have long, parallel channels. Since streams in this
regime do not converge, l � a, and thus h has a
value close to 1.

[40] 2. Short range: This regime starts when
streams begin to converge. While the first-order
streams are roughly parallel, and second-order ones
can be similarly, but to a lesser degree, positioned,
at higher orders more sinuous formations can be
found. The crossover between the hillslopes and
the short range can therefore be quite a gradual
one.

[41] 3. Randomness: At larger scales correlations
in stream and basin shape decrease, suggesting at
this scale streams belong to a random universality
class.

[42] 4. Maximal: Eventually, basin reach shapes of
geologically constrained maximal basins. As these
are controlled by tectonic processes, they are likely
to be self similar. Self similarity of basin shapes
requires an exponent of 1

�
2 in the relation between

L and a. Combining equations (7) and (8) gives this
exponent as h/d. If d has a value of 1.1, as
postulated byMaritan et al. [1996], h = 0.55 would
result in a network with self-similar basin shapes.
Dodds and Rothman [2000] discuss in detail self-
similar basins which have d = 1 and h = 0.5. The
dependence of basin scaling on this ratio is dis-
cussed later in this section, but first we return to the
smaller regimes in more detail.

[43] Assuming that the hillslope regime cannot be
seen with the 1 km DEM resolution, and that all 14
basins are too small to have properties of maximal

Figure 12. RT/Rl as a function of network’s area. Solid
line shows the ratio equal to 1.

Figure 13. T1/(Ra � Rl � 2 + 2Ra/Rl) as a function of
network’s area. Solid line shows the ratio equal to 1.

Figure 14. Hack’s law plot for combined data (4834
data points). Dashed line shows where the abrupt
change in slope occurs.
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continental basins, it follows that the logarithmic
plots in Figures 14 and 15 contain only the two
regimes in the middle of the scale. It is therefore
important to separate the regimes from each other.
To do this a statistical analysis was performed.
Using the combined data for stream lengths and
basin areas from 14 networks (Figure 14), the
uncertainty in correlation of the ordered pairs was
computed for all basins with the logarithm of the
area less than a given value. This maximum was
varied between 5 and 10 in steps of 0.01, and the
plot of correlation uncertainty as a function of this
upper bound is given in Figure 16. The larger the
upper bound, the more points are taken into ac-
count, and if the plot was a linear regression,
increasing the number of points would decrease
the correlation uncertainty. This trend is present
over �2 natural orders of magnitude, where the
uncertainty starts to increase. The suggestion made
here is that at this point a different scaling regime is
entered, and we are attempting to correlate points
on two adjacent regression lines, resulting in an
increase in the uncertainty. The area which corre-
sponds to the lowest correlation uncertainty (log
a = 6.73, or a � 800 km2) is then the value at
which the crossover takes place. The a-l ordered
pairs from each basin were then separated into the
2 regimes according to which side of the threshold
the value for a is. Hack’s exponents were then
calculated in each basin for the data on either side
of the threshold. These are given in Table 3,
together with the overall value of h.

[44] As was done with Rn earlier, the values of
h from the 14 networks were compared with
topography parameters. The best correlation was

found to exist between h on either side of the
threshold and the roughness of the topography,
computed using spectral methods of Turcotte
[1992]. These are shown in Figure 17. The stars
represent the values for h obtained from basins
smaller than the threshold, and circles for the ones
greater than it. Regression lines have been plotted
as well; the results from small basins have 74.9%
correlation with the roughness, and the larger ones
54.2%. The regressions can be stated with 99% and
95% confidence, respectively. It is very interesting
that with increasing roughness h for small basins
decreases, while the h for large basin increases. We

Figure 15. Hack’s law plot for (a) Molopo and (b) Gourits networks to show the abrupt change in slope. Dashed
line shows where the abrupt change in slope occurs.

Figure 16. Correlation uncertainty in the Figure 14
plot up to a certain area as a function of that area. The
minimum is at log(a) = 6.73; this value is taken as a
threshold between short-range and randomness regimes
of Dodds and Rothman [2000].
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therefore conclude that in the short-range regime
the exponent h depends on the roughness of the
topography, with rougher surfaces generating
lower values of h.

[45] The values observed for h in the two the
regimes have implications on basin shapes. Fol-
lowing Dodds and Rothman [2001], we define the
aspect ratio of a basin

k ¼ L2

a
: ð18Þ

Using equations (7) and (8), we get

k � a 2h=dð Þ�1: ð19Þ

A similar relation is derived by Rigon et al. [1996].
If (2h/d) > 1, k increases with increasing basin
area, and therefore large basins appear more
elongated. This is the case in the smaller of the 2
regimes studied here; most of the values of h are
above 0.7, considerably more than half of the 1.1
expected for d [Maritan et al., 1996]. For (2h/d) <
1 elongation is observed as basin size decreases,
while 2h = d implies self-similarity.

[46] The above-threshold basins from all 14 net-
works give h close to 0.55, which is exactly half
of the 1.1 that Maritan et al. [1996] quoted as a
value for d. Dodds and Rothman [2000] quote a
range of 1.0–1.2 for d in real rivers. In their
maximal regime these authors quote h = 0.5 for
self-similarity, but they concede this requires d =
1. The mean of the values assembled here for
above-threshold h is in fact 0.549, with a standard
deviation of 0.049. It therefore appears that basins
above the threshold of �800 km2 are self-similar.

The positive regression of h with the topography
roughness cannot be explained without a detailed
study of the variations in d. This was not possible
from the DEM-generated networks. Real maps
will be analyzed for that in due course.

[47] The analysis of the mean value of h for all
subbasins in each network was not done here. As
there are many basins with log (a) < 6.73, this
regime would dominate the average value for the
network, and correlations would be much the same
as those observed for the short-range regime.

5. Conclusions

[48] The continent of Africa is tectonically and
hypsometrically unique, and therefore provides a
unique natural laboratory for the study of river
network geometry. In this study basic scaling laws
of network geometry were analyzed for a set of
14 river basins draining Southern Africa, one of the
more unusual geomorphological sections of this
continent that is predominantly affected by epeiro-
genic activity. In each network Horton’s laws were
observed, but the values for the ratios of stream
numbers, stream lengths, and basin areas were
different in each network. We found a strong
inverse correlation between the value of Rn and
mean source stream slope, suggesting this feature
of the topography defines the value of the scaling
parameter. The other two Horton’s ratios were then
expressed in terms of Rn. Ra was proportional to
the stream number ratio, but about 15% larger than
it. This is not what was suggested for self-similar
networks, where an identity between the 2 numbers
was expected. An expression for Rl was also

Table 3. Hack’s Exponent for Each Network, as Well
as the Exponent for Subbasins on Either Side of the
Regime Crossover Threshold

River h h (log(a) < 6.73) h (log(a) > 6.73)

Fish 0.687 0.776 0.549
Nossob 0.704 0.835 0.477
Molopo 0.692 0.805 0.482
Vaal 0.702 0.782 0.569
Upper Orange 0.644 0.686 0.597
Hartebees 0.671 0.760 0.494
Olifants 0.664 0.692 0.572
Gourits 0.610 0.721 0.474
Gamtoos 0.662 0.709 0.585
Sundays 0.586 0.594 0.597
Great Fish 0.644 0.721 0.590
Kei 0.654 0.744 0.569
Upper Limpopo 0.631 0.717 0.604
Elands 0.680 0.759 0.527

Figure 17. Hack’s exponent for basins on either side
of the threshold as a function of the roughness of the
topography that the network drains.
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derived, [(1 � s1/s)Rn + s1/s], where s1/s repre-
sents the percentage of total stream length contrib-
uted by source streams. This relationship was
verified for the networks in this study.

[49] Values for side branching ratios (Tokunaga’s
law) were also obtained, but in some cases the error
associated with these was large enough to force a
conclusion that this law is not observed. This was
only the case for some networks with areas under
100,000 km2. A more detailed analysis is needed to
reveal whether this is a real threshold, or if litho-
logic and/or structural controls of subbasins result
in deviations from this law. Where the error asso-
ciated with the parameters in Tokunaga’s law was
small, these parameters corresponded to expres-
sions in terms of Horton’s ratios derived for syn-
thetic networks.

[50] Last, Hack’s law was observed in the networks
of all basins, but a detailed analysis showed that
the value for h is not constant in a specific network,
but decreases with increasing basin size. This
decrease is abrupt rather than gradual. This is
consistent with the theory of scaling regimes.
Two regimes are visible in the available resolution:
short-range and randomness, with the threshold
occurring at a � 800 km2. The values for h in
the short-range regime have an inverse correlation
with the roughness of the topography. In all the
networks h was large enough to imply basins
appear more elongated with increasing area. This
would be more pronounced in rivers draining a
relatively smooth topography. In the larger of the 2
regimes visible, the values of h are mostly between
0.5 and 0.6. This is the range for which basin
shapes are self-similar. There is a positive correla-
tion between this h and topography roughness, but
a detailed study of streams’ individual fractality, d,
is necessary before it can be concluded whether
this is a deviation from self-similarity, or a net-
work’s adjustment to variation in stream fractality
in order to maintain self-similarity.

Appendix A

[51] In section 4.1 it was assumed in derivation of
equation (16) that the network is infinite, and
therefore the geometric series can be summed as

X1
j¼0

Rl

Rn

� �j

¼ 1

1� Rl

Rn

¼ Rn

Rn � Rl

: ðA1Þ

However, for a finite network the left-hand side of

the above is actually
PW�2

j¼0

Rl

Rn

� �j

.

[52] For the networks used here the finite sum was
on average about 90% of the formula for the
infinite sum. We therefore write

XW�2

j¼0

Rl

Rn

� �j

¼ 0:9 *Rn

Rn � Rl

ðA2Þ

The corrected expression for the sum of all streams
then becomes

s ¼ s1 * 1þ Rl � 1

Rn
*
0:9 *Rn

Rn � Rl

� �

¼ s1 *
Rn � Rl þ 0:9 *Rl � 0:9

Rn � Rl

¼ s1 *
Rn � 0:1 *Rl � 0:9

Rn � Rl

: ðA3Þ

Separating Horton’s ratios gives

Rl * 1� 0:1 *
s1
s

� �
¼ Rn *

1� s1
s

1� 0:1 *
s1
s
þ

0:9 *
s1
s

1� 0:1 *
s1
s
;

ðA4Þ

and an expression for Rl becomes

Rl ¼ Rn *
1� s1

s

1� 0:1 *
s1
s

� �
þ

0:9 *
s1
s

1� 0:1 *
s1
s

¼ Rn * 1�
0:9 *

s1
s

1� 0:1 *
s1
s

� �
þ

0:9 *
s1
s

1� 0:1 *
s1
s

ðA5Þ

Comparing this to equation (17),

Rl ¼ 1� s1
s

� �
*Rn þ

s1
s
; ðA6Þ

we see that the slope and the intercept still add up
to unity, but the relatively simple s1

s has been

replaced by
0:9*

s1
s

1�0:1*
s1
s
. Thus the best fit analysis with

the constraint of the slope and the intercept adding
to 1 was still the correct procedure, but the value of

0.533 corresponded to
0:9*

s1
s

1�0:1*
s1
s
rather than s1

s . This,

however, is trivial to obtain:

0:9 *
s1
s

1� 0:1 *
s1
s
¼ 0:533

) 0:9 *
s1
s

¼ 0:533� 0:0533 *
s1
s

) s1
s

¼ 0:533

0:9þ 0:0533
¼ 0:559:
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