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Abstract Rapidly expanding urban areas in Central
Asia are increasingly vulnerable to seismic risk; but
at present, no earthquake early warning (EEW) sys-
tems exist in the region despite their successful imple-
mentation in other earthquake-prone areas. Such sys-
tems aim to provide short (seconds to tens of seconds)
warnings of impending disaster, enabling the first risk
mitigation and damage control steps to be taken. This
study presents the feasibility of such a system for
Almaty, Kazakhstan. Genetic algorithms are used to
design efficient EEW networks, computing optimal
station locations and trigger thresholds in recorded
ground acceleration. Factors like the possibility of
station failure, elevation and access difficulty to a
potential site, and the potential usefulness of existing
stations in the region are considered. We present a large
set of possible efficient networks, to which further
selection criteria can be applied by both the installation
teams and the end user, such as authorities in Almaty.

Keywords Earthquake early warning . Seismic
risk . Central Asia . Genetic algorithms

1 Introduction

Central Asia faces a significant earthquake hazard and
risk. In particular, rapid urbanization of the major cities
in the region, such as Bishkek and Almaty, makes
society increasingly vulnerable to natural disasters
(e.g., Abdrakhmatov et al. 2003; Torizin et al. 2009;
Bindi et al. 2011). Almaty in particular has repeatedly
been severely damaged by earthquakes of magnitude 7
and higher (e.g., Delvaux et al. 2001), and continues to
face high earthquake risk. This risk was one of the
reasons for moving the capital of Kazakhstan to
Astana in 1998. Some fault systems in the region are
expected to generate a magnitude 7.5 earthquake (Erdik
et al. 2005) with a risk scenario study of Bishkek show-
ing that such an event could lead to 90,000 people
requiring hospitalization (Bindi et al. 2011).

Worldwide, the proximity of many large cities (e.g.,
Tokyo, Mexico City, and Istanbul) to seismically active
regions and the associated earthquake risk led to the
development of earthquake early warning (EEW) sys-
tems (e.g., Doi 2011; Espinosa-Aranda et al. 2011;
Sesetyan et al. 2011, respectively, for the aforemen-
tioned). These systems operate continuously, and aim
to issue warnings after the earthquake has occurred,
aiming to provide short-term (order of seconds or tens
of seconds) warning of the impending disaster to the
city. In this time, even in a few seconds, several steps
can be taken to reduce and mitigate damage and risk.
These include orderly shut-offs of electricity and gas
supply, deceleration of rapid-transit vehicles, and con-
trolled suspension of activity in hospitals (e.g., Allen
et al. 2009; Nakamura et al. 2011). No such systems
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exist in Central Asia, though Picozzi et al. (2013)
recently presented a feasibility study for designing
such a system for Bishkek.

Several EEWs have been developed, differing in the
type of input they use (single station or a seismic
network) and the level of information they provide
(e.g., Erdik et al. 2003; Doi 2011). A key issue of all
the systems, however, is taking advantage of informa-
tion being transmitted electronically at much higher
speeds than those of seismic waves. Thus, the signals
recorded at one or multiple stations can be transmitted
to a central gateway, analyzed, and a warning can be
issued while the most damaging seismic waves, the
S- and surface waves, are still progressing to the target
site. This warning can be updated with time, for in-
stance every second, until these waves reach the target
site.

The key parameter in all EEW systems is the lead
time. The exact definition of this time depends on the
configuration of the EEW system used (see Satriano
et al. 2011, for a review) but it is usually defined as the
time difference between the arrival of the destructive
S-waves at the city and the time the first warning is
available. This corresponds to the maximum possible
warning time that can be given. Here, we define this
time as the difference between the ground acceleration
reaching a predefined threshold (most likely during the
arrival of the S-wave) at the city, and the earthquake
being reliably detected by ground acceleration thresh-
olds being exceeded at different stations of the net-
work. In all the calculations, we also assume the signal
transmitted between individual stations and the central
datacenter system to be instantaneous. This is clearly
idealized and, as such, represents the optimum case.
The networks used by the Japan Meteorological
Agency require at least 2 s of processing time, though
some systems in Japan have reduced this to 0.1 s
(Nakamura et al. 2011). As a processing time in the
order of seconds would significantly affect the possible
warning time in the case of Almaty, any network would
need to be accompanied by a high quality and efficient
telecommunications system.

An important aspect in developing an EEW system
is the geometry of the network. Evaluations of existing
networks and suggestions for their improvement have
already been performed (e.g., Zollo et al. 2009; Oth
et al. 2010). The work presented in this article builds
on the genetic algorithms developed by Oth et al.
(2010) to show how an optimal network for a trigger-

based warning system can be designed, addressing
questions such as how many stations are necessary
and sufficient, as well as their locations. The focus of
our study is the city of Almaty in Kazakhstan, exposed
to seismic risk from the Issyk-Kul and Chon-Kemin
fault systems (Fig. 1).

2 Stochastic seismogram database

The optimization approach used here requires a repre-
sentative sample of relevant seismic recordings. In the
design of an EEW network, it is critical that all poten-
tial earthquake sources are considered. Due to the
sparsity of large earthquake recordings in the region,
stochastic simulations of scenario earthquakes were
performed using the finite-source ground motion sim-
ulation code EXSIM (Boore 2009). Overall, 100 sce-
nario earthquakes were considered. Sixty-four loca-
tions were randomly chosen along active segments of
the Issyk-Kul and Chon-Kemin fault systems (provid-
ed by the Kyrgyz Institute of Seismology, digitized by
the Arizona State University1), with moment magni-
tudes between 5.5 and 8.0. Furthermore, approximate
locations of 11 large historical earthquakes, including
the 1911 Kemin and the 1885 Belovodosk earth-
quakes, were considered (e.g., Delvaux et al. 2001).
These had moment magnitudes between 5.1 and 8.3.
Finally, 25 earthquakes randomly distributed in the
study area, with magnitudes not exceeding 5.5, were
considered (Fig. 1). For all scenarios, reverse faults
were assumed with depths not exceeding 5 km.

The possible station locations were considered on a
grid with 0.1° spacing, from 42.1° to 43.3° north and
from 76.0° to 78.7° west. With some locations not
considered due to coinciding with Lake Issyk-Kul,
293 possible locations were considered. For each loca-
tion, stochastic seismograms were computed for all
scenario earthquakes resulting in a database consisting
of 29,300 traces representing ground acceleration. One
of the possible station locations coincided with the city
of Almaty—the seismograms computed for this site are
particularly important regarding the timing and level of
a warning that is to be issued and for using these
ground motions to provide macroseismic intensity es-
timates (e.g., Sokolov and Chernov 1998). The

1 http://activetectonics.asu.edu/N_tien_shan/N_tien_shan_data.
html
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velocity models and most other EXSIM parameters
used were similar to those used by Picozzi et al.
(2013). Site amplification effects were estimated from
the topographic slope, which can be considered a proxy
for shear wave velocity of the uppermost 30 m, VS30

(Wald and Allen 2007). Following Böse (2006), the
P- and S-wave contributions were computed separately
using appropriate velocities, source terms, and attenua-
tion parameters, and then added with the respective time
delays.

3 Network evaluation and optimization

3.1 Determining the quality of a network

The methodology for evaluating and optimizing net-
work performance used in this study has mostly been
developed by Oth et al. (2010) for the Istanbul EEW
system, and only an overview will be presented here.
An important aspect of an EEW system's performance
is its ability to give not only timely, but also reliable
warnings with respect to the shaking that needs to be

expected at the target site. In the work of Oth et al.
(2010) for the case of Istanbul, the expected degree of
shaking is expressed in terms of warning classes. Four
classes of events are thus defined with respect to the
peak ground acceleration (PGA) that arises for a given
event at the target site. Class 0 means that the expected
PGA at the target, in our case Almaty, will not exceed
0.02 g. Class I events are defined as those with PGA
between 0.02 and 0.07 g, class II between 0.07 and
0.12 g, and for class III exceeding 0.12 g. These are
the same values as used by Oth et al. (2010), who
followed the estimate that ground motions with
PGA>∼0.1 g are considered as potentially seriously
damaging (Anderson 2003) and used warning classes
equally wide in terms of PGA range. While the chosen
values are to a degree arbitrary, they nonetheless give an
indication of scale of the expected ground motion. We
use the parameter PGA and the ranges given above for
demonstration purposes, yet depending on the target site
and application to be carried out in case of a warning,
other parameters (providing for instance a better repre-
sentation of long-period ground motions) and ranges
might be more appropriate.

Fig. 1 Topographic map of the study area. Elevation given in
meters. Black square Almaty, dashed line international borders.
One hundred scenario epicenters considered in the study are

marked with circles of size corresponding to the magnitude.
Epicenter of the 1911 Kemin earthquake (M=8.2) was indicated
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For each hypothetical network, as well as specifying
the locations of all the stations, three ground accelera-
tion trigger thresholds need to be defined for event
class identification—if during a 5-s window a given
trigger threshold is exceeded at any set of three stations
of the network, a warning of the class associated with
this trigger threshold is declared. While these trigger
thresholds thus correspond to the warning classes, their
values do not necessarily correspond to the class
boundaries defined above, with the former quantifying
the ground motion at the section of the network closest
to the epicenter, and the latter providing bounds for the
expected ground motions at the target site.

Thus, each network consisting of n stations is de-
fined by n+3df—the station locations and trigger
thresholds. The optimal network is the one that can
give the correct level warning (i.e., correct class of
expected ground motion at the target) at a sufficiently
long lead time for the highest number of scenario
earthquakes.

To quantify this network quality, we use the cost
function developed by Oth et al. (2010):

cost ¼
XN

i¼1
Wi L 1−Kð Þ � S twarn;i

� �þ K
� � ð1Þ

where N is the number of events (100 in this case) and
twarn,i represents the warning (lead) time for each event.
K is 0 if the event class has been identified correctly

and 1 otherwise, L is 0 for class 0 events and 1 other-
wise, and W is the weight associated with each event.
S(twarn,i) is a continuous function with values between
0 and 1 comparing the lead time to a predefined time
being considered as a sufficient warning time, tsufficient.
This function tends to 1 for small, insufficient lead
times, and to 0 for large lead times. Oth et al. (2010)
used a sigmoid function centered at tsufficient (Fig. 2).
The exact value of the lead time considered to be
sufficient depends on factors such as proximity to the
seismogenic zone and the measures expected to take
place once the warning has been issued. Satriano et al.
(2011) used a value of 10 s when illustrating the prin-
ciples of early warning. While a 10-s warning time can
be considered sufficient, this is not always possible for
Almaty. Figure 3 shows the distribution of S-wave
travel times of the 100 scenario earthquakes. Two of
these times are under 10 s, and a further six between 10
and 15 s. Given that the detection and location of the
earthquake is not instantaneous but will take at least a
few seconds, a 10-s lead time for these events is not
possible and any network optimization algorithm re-
quiring a sufficient warning time of 10 s would ignore
these events. As these include the Kemin earthquake,
this would not be an appropriate approach. We thus use
an asymmetrical sigmoid as cost function (Fig. 2).
With this function, lead times above 10 s are consid-
ered sufficient in a similar way to a standard sigmoid,

Fig. 2 Two possibilities for
function S in Eq. (1) used in
the study. The standard sig-
moid centered at 10 s
marked as a thick gray line,
the asymmetric function
more tolerant of lower lead
times as a thin black line
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but lower lead times are treated with more leniency.
This way, the optimization approach will nonetheless
attempt to maximize the warning time for events where
a 10-s warning is impossible.

3.2 Minimizing the cost function

To minimize the cost function and thus find the optimal
station locations and trigger thresholds, a microgenetic
algorithm (MGA; Krishnakumar 1989) was used.
MGAs are a specific subset of genetic algorithms
(GAs), which are guided search techniques based on
evolutionary principles to find optimal models with
respect to a given objective function (i.e., cost function).
Typically, a random set of starting models, termed the
population, is generated at the start of such an algorithm.
Each model, termed the chromosome, consists of pa-
rameters termed genes. In our case, the genes are the
positions of the n stations within the grid and 3 is the
trigger threshold values. Each chromosome, made up of
n+3 genes, represents a possible network. For each
chromosome, the cost function is computed, and the
fittest chromosomes (networks with the lowest cost
function) are allowed to mate and exchange genetic
information via a predefined crossover operator and
possibly random mutations. Over a large number of

iterations (termed generations), the algorithm will con-
verge to a minimum cost value representing the optimal
network. Given the random input to start the algorithm
and the non-uniqueness of such an optimization prob-
lem, the solution is likely to be a local, rather than
absolute, minimum. It is therefore important to perform
a number of independent runs to obtain an overview of
the range of best solutions.

MGAs differ from classic GAs in using small popu-
lation sizes. Each time the algorithm has converged
(which, in this study, is considered to be the case if less
than 5 % of the genes differ from one chromosome to
another in the population), the population is resized to
random, except for the fittest chromosome, which is kept
in the population. Oth et al. (2010) found MGAs to be
appropriate for computing optimal networks for Istanbul,
andwe apply their approach in our study. Population size
was set at 15 for all simulations, the cross-over operator
was set at 0.95, and no mutations were used. Each
algorithm was allowed to run for 5,000 generations.
These values were deemed appropriate following trial-
and-error simulations with different values for these
parameters. Networks with between 5 and 12 stations
were considered. For computing the cost function, both
the standard sigmoid and the asymmetrical one (Fig. 2)
were considered in independent simulations. For each

Fig. 3 Histogram of S-wave
travel times from the 100
epicenters to Almaty
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number of stations–sigmoid combinations, 20 indepen-
dent runs of the MGA, each using random input, were
performed. The output of each MGA run is not just the
network with the lowest cost function but a number of
networks with marginally higher cost functions.

3.3 Pre-existing stations

While no EEW systems exist in Central Asia, a number
of stations are maintained by the Kazakhstan National
Data Centre. In particular, 10 stations located between
Almaty and the seismogenic zone considered in this
study could potentially aid the EEW system (Table 1).
For our calculations, we projected each of these sta-
tions to the nearest grid point used in our stochastic
database and MGA. Using one or more of the pre-
existing stations would reduce the costs and logistical
issues during the installation and management of an
EEW network. However, we do not want to force any
of these stations into a network as their positions might
not be optimal for EEW purposes. By trial and error,
we found that reducing the cost function of a network
calculated in Eq. 1 by 2 % for each pre-existing station
used provides a balance between prioritizing pre-
existing stations and finding efficient networks.

3.4 Dealing with station failures

An important, and perhaps dangerous, assumption in
the approach described above is that all stations remain
operational. Failure of a strategically placed station
would seriously jeopardize the performance of the
EEW system. It would therefore be advisable to design

a network whose efficiency is not dependent on a
single, critical, station.

Two approaches to deal with station failures were
considered here. The first is to incorporate the possi-
bility of such failure into the MGA. For each consid-
ered network of n stations, each station in turn is
ignored and the cost function of the resulting n−1
station networks is computed using Eq. 1. The cost
function of the full network is then taken as the highest
cost of the n networks of n−1 stations (the worst case
scenario). The MGA then attempts to minimize this
value.

The problem with the aforementioned approach is
the significant increase of computational time.
Considering a 10-station network, incorporating the
possibility of a single station failure increases the run
time of the optimization algorithm 10 times. Should the
possibility of two stations failing be considered, the run
time would increase 45 times. We thus present a second
approach, where the MGA is run as described earlier,
assuming all stations being operational. As mentioned
previously, the output is a large number of possible
networks. For these, or a number of the best of these,
the effect of any single station failing can be evaluated
by calculating the cost function for all n−1 station
networks, and, as before, taking the worst case scenar-
io. Networks can then be sorted according to this worst
case cost function. The result is a network which is
efficient as a whole and remains efficient when any
single station fails. While this approach might not be as
strictly mathematically correct as the first one, it has an
advantage of significantly lower computational times.
Tests were performed to compare the quality of the two
approaches and differences in the results were small.
We therefore proceed with the second, less computa-
tion intensive, approach.

4 Results and discussion

An important question in designing a network is how
many stations are necessary. To establish this, we look
at the lowest cost function found by 20 independent
MGA runs for networks between 5 and 12 stations,
using both sigmoid functions discussed earlier. The
results are shown in Fig. 4. It should be pointed out
that while here, and throughout this study, lower values
are obtained for cost function using the asymmetric
sigmoid, this does not imply the networks computed

Table 1 Existing stations in the study area

Station code Latitude north Longitude east Network

KNDC 43.217 76.966 KNDC

BOOM 42.490 75.940 IS RK

ANO 42.783 77.667 IS RK

PRJ 42.474 78.406 IS RK

MTB 43.130 76.430 SEME RK

TNS 43.050 76.933 SEME RK

AAA 43.267 76.950 SEME RK

TRG 43.307 77.637 SEME RK

SAT 43.057 78.407 SEME RK

KST 43.043 75.963 SEME RK
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using it are superior. This is merely the effect of lesser
costs associated with not providing a 10-s warning.
Figure 4 shows that with few (five or six) stations,
adding one station can make a significant improvement
to the cost function. While the cost function always
decreases with an increasing number of stations, this
decrease becomes gradual once more than seven sta-
tions exist in a network. Given the risk of station failure
is being considered, we thus propose that 10 stations
are necessary for an efficient network.

Using the MGA described above, we obtained tens
of thousands network layouts. As these are impossible
to present in their entirety, we attempt to identify pat-
terns in the best stations. For this, for each of the two
different sigmoid functions defining the cost, the 1,000
networks with lowest cost function values were con-
sidered. Figure 5 shows the locations of the stations
appearing in at least 10 % of the 1,000 solutions. The
stations are color coded according to how frequently
they are selected. Pre-existing stations are labeled with
their codes from Table 1. In Fig. 5a, the standard
sigmoid centered at a lead time of 10 s was used. The
cost values of the best 1,000 networks vary between
0.210 and 0.232. As expected, no new stations are
present in proximity of the scenarios less than 50 km
from Almaty (including the Kemin event)—only the
pre-existing TNS station is used by more than 10 % of
the solutions. As no network is capable of giving a 10-s

warning for these near events, the MGA effectively
ignored them. Figure 5b shows the most common
stations in the solutions obtained using the asymmetric
sigmoid more tolerant of lower warning times. Here,
the cost values of the fittest 1,000 stations vary be-
tween 0.196 and 0.216. Several of the stations are the
same as in Fig. 5a, but a crucial difference is that
stations closer to the epicenters of the events close to
the city appear more frequently. Station TNS, for ex-
ample, which from a visual inspection is strategically
well placed between the Kemin epicenter and Almaty,
is used by more than 30 % of the solutions.

TNS is not the only pre-existing station to appear in
the solutions, and it is interesting to note that stations
far from Almaty are frequently used. Station SAT in the
east appears prominently for both sigmoids, as does
station KST in the west. Stations closer to Almaty are
not as frequently selected as might have been expected.
Station ANO appears in 6 and 17 % of the standard and
asymmetric sigmoid solutions, respectively. However,
both sets of solutions place strong emphasis (68 and
62 %) on a new station just 0.2° west of ANO. We thus
postulate that while pre-existing stations can aid the
network, there exist critical locations where new sta-
tions would need to be deployed, even if a station
already exists nearby.

In the results presented so far, fully functional net-
works were assumed. We now consider the possibility

Fig. 4 Lowest cost values
obtained for different num-
bers of stations used. Two
curves correspond to the
sigmoids in Fig. 2
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of station failure. Only the networks computed using
the asymmetric sigmoid will be used to present results
of this. For the 1,000 networks with the lowest cost
value, we consider the possibility of a single station
failing. Thus for each network, we compute the cost of
10 nine-station networks effectively left after any sin-
gle of the 10 stations ceases to be operational. Figure 6
presents a network not overly dependent on any single
station. The top panel shows the location of the stations
over a topographic map of the region, with pre-existing
stations marked in yellow and station that would need
to be deployed new in white. The middle left panel
shows how many of the events in each class have been
classified correctly or misclassified by 1 or 2 warning
class levels (assuming full functionality of the net-
work). An obvious weakness of this network would

be the high number of incorrect warnings for class II
events, though at least warnings would be issued for
them. The middle right panel shows the histogram of
lead times that could be provided for the scenario
events. The bottom panels show the warning time that
could be issued as a function of event magnitude and
epicentral distance. The cost value of this network is
0.215, making it only 809th in the list of computed
networks. However, with a single station failing, the
cost value would go up to between 0.224 and 0.248
(depending on which station fails). By comparison, a
single station failure of the most efficient network
could make the cost value rise from 0.196 to 0.266.

A possible problem associated with the deployment
and maintenance with networks considered so far is the
high altitude of some proposed station locations. In the

Fig. 5 Stations appearing
most frequently in the 1,000
ten-station networks with the
lowest cost values. Stations
are color coded according to
how frequently they appear
in the best solutions. Pre-
existing stations from KNDS
networks are marked and
labeled; a standard sigmoid
and b asymmetric sigmoid.
Elevation scale as in Fig. 1
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network shown in Fig. 6, six stations are at elevation
higher than 3,000 m above sea level, two of them being
above 4,000. To deal with this issue, a penalty function
can be introduced to the cost value. For each station
located above 3,000 m above sea level, the cost func-
tion is increased by 3 % of its value and by 10 % if the
altitude is greater than 4,000 m. These values were

chosen to provide a compromise between discouraging
stations at altitude, but not excluding them if the loca-
tion is indeed strategically beneficial. The MGA was
run a further 20 times with this penalty function, using
10 stations and the asymmetric sigmoid.

The optimal network with this additional penalty
incorporated into the cost value is shown in Fig. 7.

Fig. 6 A 10-station network which would be most efficient
despite any single station failing. Top panel station distribution,
with pre-existing stations that would be part of the network in
yellow and new stations in white. Middle left panel number of
correctly classified and misclassified events for each event class.

Middle right panel Histogram of warning times. Bottom panels
lead time available for the considered scenarios as a function of
magnitude and epicentral distance. The trigger thresholds for the
three warning classes are 0.03, 0.15, and 0.24 g
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Only one of the stations is above 3,000 m altitude. The
cost value of this network is 0.207, which includes the
3 % penalty—without it, the cost value would be
0.201. This network would only function efficiently
if all stations remain operational. A single station fail-
ure could make the cost value rise to 0.273 (not includ-
ing the 3 % penalty). To find a network which is least
dependent on any single station, we use the same
technique as previously, evaluating effective nine-
station networks following any station failure among

the 1,000 most efficient networks. The result is
presented in Fig. 8. Two of the stations are above
3,000 m and the cost value of the network is 0.227 (real
cost 0.215 and a 6 % elevation penalty). The worst case
station failure scenario would raise the cost value to
0.265 (real cost 0.250 and a 6 % penalty). These values
are almost the same as those for the network shown in
Fig. 6 (where station elevation was not considered).
However, important differences in network perfor-
mances can be seen when studying the lower panels of

Fig. 7 The most efficient network when a penalty is imposed for stations above 3,000 m altitude. Panels as in Fig. 6. The trigger
thresholds for the three warning classes are 0.02, 0.16, and 0.30 g
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Figs. 6 and 8. The network in Fig. 8 misclassifies more
events than the one in Fig. 6, one class III event is even
completely missed. It does, on the other hand, give more
lead times over 10 s. This illustrates the difficulty asso-
ciated with finding the balance between warnings being
timely and accurate. While the quality of a network can
be mathematically expressed with a single cost value, it
is important to carefully analyze the network perfor-
mance, as important information can potentially be lost
in the averaging process defined in Eq. (1).

The results presented here are still open to input from
the end users, i.e., the authorities in Almaty, who need to
decide what is to be done once a warning has been
issued. Should they consider a warning time of less than
10 s insufficient for any practical purposes, the results
obtained using the standard sigmoid in the cost function
(e.g., Fig. 5a) can be used. If this is the case, it is possible
that no warning at all will be given for an event close to
the city, and more reliable and timely warnings will be
possible for earthquakes farther away.

Fig. 8 Network which would be most efficient following any single station failure, with a penalty imposed of stations above 3,000 m
altitude. Panels as in Fig. 6. The trigger thresholds for the three warning classes are 0.03, 0.23, and 0.28 g
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5 Conclusions

In this manuscript, we present a tool for designing an
optimal EEW network, using the city of Almaty as a
case study. By simulating the ground acceleration
resulting from 100 scenario earthquakes at 293 pro-
spective sites, as well as Almaty, we use genetic algo-
rithms to identify station locations and acceleration
trigger thresholds that would make up a network capa-
ble of giving timely and reliable warnings. We estimate
that 10 stations is an appropriate number for an effi-
cient network. The networks are only considered to be
acceptable if they remain efficient after any single
station fails. We also demonstrate that while some
stations already existing in the region can be used to
aid the network, there nonetheless exist critical loca-
tions where further stations are necessary.

While we have presented examples of highly effi-
cient networks, we stress that these are not the only
solutions we have computed. With thousands of net-
works of similar quality available, it is possible to
introduce further constraints on the optimal network.
This can be done by excluding networks not meeting
new criteria from the list of solutions or introducing a
penalty into the cost function and rerunning the MGA.
For example, if prior to the installation, a certain area
becomes politically unstable, networks containing sta-
tions there can be removed from the list of solutions
and the network with the lowest cost among those
remaining can be installed. Similarly, it might be con-
sidered impractical to install, or maintain, stations
above a certain altitude or more than a specified dis-
tance from a road or settlement. The presented feasi-
bility study remains open to input from the end users,
i.e., the authorities in Almaty.

The EEW systems presented here are aimed at re-
gional earthquakes. For an earthquake close to the city,
it is not possible to give a timely warning. It is thus
recommended that a regional EEW system is
complemented by a single station on-site system
(Satriano et al. 2011). Lastly, we note that the balance
between networks being fast and reliable is very deli-
cate and the performance of any prospective network
should not simply be assigned a single value, but be
carefully evaluated.
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