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1. Introduction

An important area of early warning and rapid post-earthquake response is fast
determination of structural damages. Traditionally it is carried out by inspections of
the buildings. For some time however new methods of Structural Health Monitoring
(SHM) emerged (e.g. Doebling et al. 1996), which can serve for much faster damage
assessments, or even raising alarms on-line (while the structures are still shaking).
Respective fast solutions of difficult inverse tasks constitute challenging problems in
structural dynamics. Various interesting methods for direct seismic damage detection
in buildings are under intensive investigations (see e.g. Rahmani, Todorovska, 2014).

One of key obstacles in the effective implementation of vibration based
damage detection of civil infrastructure, very often built as reinforced concrete (R/C)
buildings, derives from the fact of unclear damage definition of the R/C structures
since they exhibit multiple cracks during various levels of vibrations (e.g. Maek,
DeRoeck, 1999, Ndambi et al., 2002, Zembaty et. al 2006) and are designed to be
exploited partly cracked. For these reasons special methods of their stiffness
monitoring were formulated in the literature, based e.g., on fiber optics placement in
the R/C beams and columns (Goldfeld, Klar, 2013).

Recently, new rotational sensors emerged in geophysics (Lee et al. 2009, Igel
et al. 2012) prompting fast development of a new area of the rotational seismology.
These techniques are also employed in other branches of engineering (Maydan) and
angle resolutions reached level of 107 degree. Thus the new sensors can also be
beneficial in the SHM of civil engineering structures (Kokot Zembaty 2009, Shreiber
et al. 2009, Zembaty et al 2013).

The purpose of this paper is to report on recent research on the application of
rotation rate sensors in stiffness “reconstructions” of beams, aiming at future, better
monitoring of the R/C structures.

2. Problem formulation
Consider R/C structure in flexural vibrations (Fig. 1) and seismic excitations
U(r) (Fig. 2):
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Fig. 1 Cracked reinforced-concrete beam in flexural vibrations

The stiffness of structural members and level of structural damage can be
described by the intensity of cracks appearing in the beam of Fig. 1 and in the
columns of the structure shown in Fig. 2. Since (due to appearance of cracks) it is
difficult to directly measure strains of the R/C beam or column, by putting rotation
sensor in the most bended areas of the structure one can much better follow its
stiffness variations than by direct application or traditional acceleration sensors. In
addition, for such structures like the ones from Fig. 2, a difficult task of monitoring
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4. Experiment 1: Obtaining strain from rotational velocity of the

beam axis

The small scale, laboratory models to study structural rotations should be
chosen in such a way, that the resulting rotations are large enough to represent typical
rotations of structures in full scale. After an analysis what was available, it was
decided to perform experiments on small span, cantilever beams made of plexiglass
excited by kinematic harmonic excitations. It should be noted that such small beams
are much easier to excite in laboratory conditions by using kinematic excitation, than
exerting the actuator motion on them. For this reason a heavy, long span, simply
supported steel beam was prepared to act as a support for the analysed plexiglass
beam. The steel beam was excited in vertical direction by the actuator controlled by
HBM Instron system, while the analysed, plexiglass beam was clamped at the mid-
span of the steel beam. This solution made it possible to excite kinematic vibrations of
the plexiglass beam. To measure rotations the Systron Donner sensor HZ-100-100
(£100°/s range) was applied. The harmonic motion of the actuator was controlled by
Instron system, while data acquisition was done by multi-channel system , MCG Plus”
of Hottinger. The material data of plexiglass are as follows: density p = 1318.7kg/m’
and Young modulus E = 4.51 GPa.
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Fig. 4 Schematic view of the plexi beam under vertical, harmonic, kinematic excitations with four
gauges and rotational sensor mounted in its mid span

6. Experiment 2: Reconstruction of stiffness variations of a cantilever

beam

The tests were carried out using the same experimental set up as previously,
but with two types of plexiglass beams: the ‘intact’ beam and a beam with three drops
of stiffness (Fig. 7).
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Figure 7. The geometry of the beam investigated in experiment ‘2’ - in intact and the in the
‘damaged’ state defined by three stiffness reductions.

To measure translational vibrations three miniature accelerometers PCB 333B52 were
installed underneath the beam. The angular motions were measured using three
rotation rate sensors HZ 100-100 installed on top of the beam. All sensors were glued
at points corresponding to the nodes of the finite element. The mass losses from the
reductions of the beam cross-sections were compensated by gluing nuts to the beam
(see Fig. 8).

Figure 8. Detail of the beam with angular sensor HZ 100-100 installed at the beam stiffness drop
and the additional, compensating masses (nuts)

The detailed scheme of the vibrating beam together with all the translational and
rotational degrees of freedom is shown in Fig. 9. Two models of the 750mm long
plexiglass beam were measured and analysed: the first ,jintact” one, with constant
cross section b=80mm and h=14mm (see upper part of Fig. 7) and the second,
,damaged” one, with decreased cross sections (see lower part of Fig. 5), leading to
15% drops of stiffness.

their inter-story drift during seismic excitations can directly be carried out (Schreiber
et al, 2009) as the angle ¢; translates directly into the inter-story drift.
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Fig. 2 Moment resisting reinforced-concrete structure under seismic excitations
Before any serious tests of the real R/C structures are carried out, the
application of the rotation rate sensors in measuring the beams in bending in
laboratory scale should be carried out. For these reasons experiments on plexi beams
using relatively small and simple Horizon 100-100 sensors were carried out. The

results are reported in chapters 4 and 6. First however basic relations between the
beam axis rotation and its strains will be studied in detail.

3. Beam under flexural vibrations and the rotation of its axis
Consider equation of motion of a uniform cantilever beam (EJ(x)=FEJ=const,
m(x)=m=const) under kinematic excitations (Fig. 3):
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EJ s V4V+I<a ZVW + umw + pumw = —mu(t)
Ox ox

(D
where “dot’ stands for differentiation with respect to time, ) is the acceleration of

the kinematic motion of the beam, x, u are constants reflecting the participation of the
damping proportional to stiffness and mass respectively.
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In Tab. 1 selected results of this experiment are shown.

Tab. 1 Comparison of measured and calculated amplitudes of rotation rates and strains.

amplitude of strains

amplitude of amplitude

A , calculated
frequency  excitation of rotation (e, 14 smd calculated
accelerations rate measured I — usimng
. FEM
input)
[Hz] [m/s”] [deg/s]

1 2 3 4 5 6
4.50 0.5454 2.70 1.45E-05 1.37E-05 1.36E-05
325 0.7727 6.88 3.14E-05 3.07E-05 3.05E-05
5.70 0.9655 12.85 5.91E-05 5.36E-05 5.58E-05
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Fig. S Illustration of the experimental set-up to measure rotations and strains

The differences among the strains obtained from rotation rate and directly measured
reached about 5-9% which can be explained by the differences between simplified,
continuous dynamic model of the cantilever beam and its actual experimental
realization as well as various forms of noises present in this experiment.
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Figure 9. Dynamic model of the cantilever beam vibrating under vertical, kinematic, harmonic
excitations

The fundamental, natural frequency of the tested cantilever beam (with all the sensors
attached) equalled 6.90Hz while for the “damaged” one 6.23Hz. This was important
to know before the experiment started, as the ,,reconstruction” method described in
chapter 2, by definition avoids vibrations close to resonances (Kokot, Zembaty,
2009a, 2009b).

The tests were carried out by measuring harmonic vibrations of the plexiglass beams
for various excitation frequencies (from 3.5Hz to 7.5 Hz), outside the resonance
zones, at low excitation level (amplitude of displacements at the fixed end was equal
to 0.5mm). The minimization in the stiffness reconstruction process was carried out
using the hybrid optimization procedure described in detail in the paper by Kokot and
Zembaty (2009a). First a specific number of 6000 generations in the genetic algorithm
allowed to reach the vicinity of the global minimum. Next the Levenberg-Marquardt
local search method was involved to fine-tune the solution.

Two solutions were studied in detail: with three measured translation accelerations
only and with three rotation rates only. Results for excitation frequency p=4.5Hz and
amplitude of the beam tip response equal to about 0.5mm, are shown in Table 2. The
errors of reconstruction equalled: WAE=2.48% and ME=3.87%.

Table 2. Stiffness reduction factors for a beam with three stiffness reductions under harmonic
kinematic excitations at frequency 4.5Hz.

o (05) a3
actual stiffness reduction 085 0.70 0.55
detected stiffness reduction 086 0.67 054
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Fig. 3 Cantilever beam under vertical, kinematic excitations

Applying mode superposition method (e.g. Chopra, 2011) leads to following solution

w(x,t) = —i o, k(@ -r)dr
= @)

in which
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is the modal participation factor, yj(x) stands for the “/-th” mode shape, while 4;(?) is
the impulse response function of the “‘j-th” natural mode of vibration:

§

1 :
hi(t) =——exp [— fja)jt]sm(a)jdt)
@ ;g
g (4)
where a)jd=\/(1-§j2) is the damped natural frequency and {=u/(2w;j)+xw;/2 is the modal
damping ratio. Equation (2) can be used to obtain its spatial derivative 1.e. the angle of
the axis rotation:

(x,1) = % = —Z @jw;-(x)j: h;(t)i(t—7)dt
j=1

(3)
and second derivative, which is proportional to bending moment
o'w(x,ty M 1 = & y
G'(x,t) = >~ = =—=- v (x)| h (it —7)dr
(o)== =gy =, = e[ @i 1) o

Using the Fourier transform one may re-write equation (2) in frequency domain as
follows

W(x.0)==> 9w H (U (@)
/= (7)

where Hj(w) stands for frequency response function of the “j-th” mode of vibration
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5. Reconstruction of flexural stiffness of a beam under harmonic

vibrations from the rotations of its axis
Consider familiar equation of motion of a discrete dynamic system under
harmonic excitations with frequency p [rad/s] and vector of excitation amplitudes Py:

oo d_ . __ ipt
M{G+K"q=Pge (s

where superscript ‘d’ indicates that the structure vibrates in a ‘damaged’ state with its
original, stiffness matrix K reduced to K¢ due to the accumulated damages, while the
matrix of inertia M stays unchanged. It is also assumed that structural response is
small and out of the resonance frequencies zones, so that damping effects may be
neglected. Such situation occurs for example for the cracked reinforced concrete
structures (e.g. Zembaty et al., 2000). In Fig. 6, a fragment of a beam structure under
harmonic excitations is presented. The structure is divided into finite elements -/, £,
k+1 etc. The generalized coordinates ¢i, gi+1, gi+2, are assumed along the measurement
directions and include also rotational degrees of freedom.
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Figure 6. Fragment of a beam structure under harmonic excitations with translational and
rotational degrees of freedom

Eq. (15) can be solved using familiar algebraic matrix equation with respect to the
unknown response amplitude vector u:

(K’ - p>M)u =P, »

The global stiffness matrix can calculated using the Finite Element Method (FEM)
with contributions from all respective finite elements:

n n
K'=) K"=> aK"
i=1 i=1 (17)
where 7 is the number of all discretized elements. At this stage one can introduce the
key parameters of this analysis which are non-dimensional stiffness reduction factors
o; which describe relative stiffness loss due to accumulated damages (0<ai<l).
Substituting eq.17 into eq. 16 one obtains:

Zal—K?e —p°M |u=P,
: (18)

7. Conclusions

This paper reports the results of early stage, laboratory experiments of
the application of modern rotation rate sensors to measure and monitor of
structural vibrations in civil and seismic engineering. Following positive
recommendations from numerical simulations (Abdo, Hori, 2002, Kokot,
Zembaty, 2009b), both experiments demonstrated the ability of modern rotation
rate sensors to be effectively applied in measuring structural vibrations and in
difficult, stiffness “reconstructions” of practical structural health monitoring.

This is a good prognostic for future application of rotation rate sensors
not only to directly measure rotations of key structural elements, but also to
follow strains and monitor distributed damages of some civil engineering
structures, particularly the difficult to monitor, moment resisting reinforced
concrete frames and multi-story buildings requiring inter-story drift to measure.

More details about the reported experiments can be found in the recent
paper by Zembaty et al. (2013).

Acknowledgments This research was supported in part by the Polish NSF
Grant N506 289037 ,,Simulation and experimental investigations of rotation
measurements in dynamic identification of bar structures” and statutory fund of
Polish Ministry of Science and Higher Education (NBS 15/14). The Authors wish
to thank dr Bronislaw Jedraszak (Opole University of Technology) and Dariusz
Knapek (EC Test Systems, Cracow) for their assistance in carrying out the
experiments.

References

Chopra AK (2011) Dynamics of Structures, Theory and Application to Earthquake Engineering. Prentice Hall, New
Jersey

Doebling SW, Farrar CR, Prime MB, Shevitz DW. (1996). Damage identification and health monitoring of structural and
mechanical systems from changes in their vibration characteristics: a literature review, Report LA-13070-MS, Los
Alamos

Goldfeld, Y., Klar A. (2013) Damage identification in reinforced concreto beams using spatially distributed strain
measurements, Journal of Structural Engineering ASCE, vol.139, no. 1

Igel H., Brokesova J., Evans J. and Zembaty Z. (2012), Preface to special issue on "Advances in rotational seismology:
instrumentation, theory, observations and engineering", Journal of Seismology, vol.16, 571-72

Kokot S, Zembaty Z, (2009a), Damage reconstruction of 3d frames using genetic algorithms with Levenberg-Marquardt
local search. Soil Dynamics and Earthquake Engineering, vol.29, pp.311-323

Kokot S. and Zembaty 7., (2009b), Vibration based stiffness reconstruction of beams and frames by observing their
rotations under harmonic excitations - a numerical analysis, Engineering Structures, vol.31, pp.1581-1588

Lee W.H.K., Celebi M., Igel H., Todorovska M. (2009), Introduction to the Special Issue on Rotational Seismology and
Engineering Applications, BSSA4, vol. 99(2B)

Maeck J., De Roeck G., (1999) Dynamic bending and torsional stiffness derivation from modal curvatures and torsion
rates. Journal of Sound and Vibration, vol. 225, 1999, pp.153-170

Meydan T, (1997) Recent trends in linear and angular accelerometers. Sensors and Actuators A Physical, vol. 59, pp. 43-
50

Ndambi, J.-M., Vantomme, J., Harri, K., Damage assessment in reinforced concrete beams using eigenfrequencies and
mode shape derivatives, Engineering Structures, vol. 24, 2002, pp. 501-515.

Schreiber K. U., Velikoseltsev A., Carr A.J. and Franco-Anaya R. (2009), The Application of Fiber Optic Gyroscopes for
the Measurement of Rotations in Structural Engineering, BSSA4, vol.99, pp.1207-1214,

Rahmani M., Todorovska MI (2014). Structural Health Monitoring of a 54-story Steel Frame Building-Wave and
Vibrational Characteristics during Five Earthquakes, Earthquake Spectra, vol. 31, No. 1, pp. 501-525.

Zembaty 7., Kowalski M., Pospisil S., Dynamic identification of a reinforced concrete frame in progressive states of
damage, Engineering Structures, vol.28, 2006, pp. 668-681.

Zembaty 7., Kokot S. and Bobra P. (2013), Application of rotation rate sensors in an experiment of stiffness
'reconstruction', Smart Materials & Structures, vol. 22, open access link: http://iopscience.iop.org/0964-
1726/22/7/07700

11

|

b D g
0; -0 +2i8,0,0

H, (@)= [ iie)e™ " dr -
(8)

in which =V(-1) and Uc(®) denotes Fourier transform of the excitation

accelerations “®

Uaccel(a)) = IOO ii(f)e_iwr drt
- %)

In case of steady-state vibrations the minus signs in formulas (1, 5, 7) can be dropped.
Applying the rules of time and spatial differentiation of formula (2) into its frequency

domain form (7), one can obtain velocity of the angle of the beam axis 8 denoted in
frequency domain as Oy

Qvel (xn a)) - Z SOJW; (x)la)HJ (a))Uaccel (a))
/= (10)

Assume now that the beam has a rectangular bxA cross-section. For such the
Euler-Bernoulli beam the maximum strain (on the beam surface) equals

O w
7
OX (11)

Thus applying eq. (5) the maximum strain can be obtained in frequency domain as

h
£E=xt—
2

follows

h - "
£(r,0) =+ Y 9 W ()H (@)U ey (0)
253 (12)

Comparing equation (12) with (10) gives formula for the beam surface strain in terms
of rotational velocity written in frequency domain

hoD, 9 W(DH (@)
2i0 " oy (0H (0) "

For harmonic vibrations one may substitute amplitude of rotation rate am (6ye1)
obtaining phase shifted maximum strain. Thus the final formula to be used in the
comparisons of the amplitude of rotation rate and the amplitude of maximum strain
takes form

£(x.0) = 0,,,(x.0)

" ey,
an(e)= 5.0 = e ) L P IO (@)

2i0 3" o (DH, ()

(14)

Eq. 18 can be applied to find the vector of the amplitudes of displacements u in terms
of the vector of driving force amplitudes Py, when the FEM model of the structure is
prepared.

Consider now the norm J measuring difference between vectors of the amplitudes u®
calculated using Finite Element Method and the vector of amplitudes u™ measured in
the actual structure:

c() m \2
(o) —u'
Je)=| ",
= “ (192)

where ng 1s the number of measured displacement amplitudes. Finding minimum of
eq. 19a the vector of stiftness reduction factors a describing the actual state of damage
can be obtained. This reconstruction procedure requires the structure to be excited and
to acquire all the amplitudes along dynamic degrees of freedom of the structure.
Classic FEM analysis of beams and frames defines structural response usually only in
terms of translational coordinates, while the rotational degrees of freedom are
removed from the global stiffness matrix by static condensation. Thus one can easily
include rotational coordinates in the analyses by keeping selected, required rotational
degrees of freedom (not condensing them out). In this case instead of equation (19a)
we will have

(19b)
where ny, denotes the number of translational and additional, rotational degrees of
freedom. A comparison of the effectiveness of minimization of functionals given by
Eq. (19a) or (19b) using Genetic Algorithms and Levenberg-Margquardt local search
(GA L-M) was subject of a detailed numerical analysis in the paper by Kokot and
Zembaty (2009b). When analyzing reconstructions of multiple stiffness two measures
of its effectiveness can be defined:
e Weighted Average Error (WAE):.
2

n a d

Y -

— 1 1

WAE=_} | ——-

i=1 aj

(20)

measuring averaged difference between computed and assumed vectors of stiffness

reduction factors (the averaging summation takes place over all the discretized
elements 7.

e Maximum Error (ME) between actual and measured stiffness distribution:

ME = maxocia — aid

f (21)
The above symbols a; with superscripts a and d denote respectively the ‘assumed’ and
‘detected’ stiffness losses.
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