ECGS & ESC/EAEE Joint Workshop: Earthquake and Induced Multi-Risk Early Warning and Rapid Response Array observation of strong ground motion for estimating current wavefield in real time Masashi Ogiso (mogiso@mri-jma.go.jp), Naoki Hayashimoto, Mitsuyuki Hoshiba (Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan)

Poster 6

Background

- Next generation of Earthquake early warning: predict ground motion directly from observed wavefield
- Observed wavefield: amplitude distribution in dence seismic network (Hoshiba and Aoki, 2015)
- Other observations?

beismic array

Backazimuth

Array network information

Place	Premises of our institute
Seismometer	Tokyo Sokushin CV-374 Accelerometer
Sampling frequency	500Hz record continuous waveform
Measurement range	±2000gal
Seismometer location	Pier (204) 20cm buried (208) floor of the building (others)

Calculation of backazimuth and apparent velocity

• Semblance (Neidell and Taner, 1971)

 $S(s_{x}, s_{y}) = \frac{1}{N} \frac{\sum_{k=1}^{M} \left\{ \sum_{i=1}^{N} u_{i}(t_{k} + (s_{x} \cdot x_{i} + s_{y} \cdot y_{i})) \right\}^{-1}}{\sum_{k=1}^{M} \sum_{i=1}^{N} u_{i}^{2}(t_{k})}$ Search appropriate

Effective grid search: Oct-tree Search

Definition of evaluation function:

Array observation

for direction and

Challenges

- Evaluation of observation
- Effective calculation
 - Application in EEW: calculation in real time (within 1 s)

The grid which have large evaluation function are subdivided into 4 grids and evaluation function is calculated in each grid. Calculation ends when number of grids exceeds its limit.

Observed waveforms and semblance calculation

Anomalies of backazimuth and apparent velocity

 Initial P-wave polarization anomalies at K-NET station IBR011

1	1			1	1	1	1
							_
	лц-	- I)					

Methods of anomaly correction

- Static correction
 - Travel time differences between assumed velocity model and observations
- Dip layer correction
 - Affects local earthquakes as well as regional to teleseismic earthquake (e.g. Meng et al., 2014)
 - From model to observation: Niazi (1966)
 - conduct grid search of strike and dip amount at the top of seismic bedrock
 - seismic basement: Vp=4.8km/s, Vs=2.84km/s

Summary

- High sampling seismic array observation for estimating current wavefield
- Real time calculation: every 1 s calculation using 4 s time window
- Backazimuth anomalies: can be interpreted that caused by subsurface structure
- Correction of anomalies are needed for

