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1) Preventing false alarms from EEW systems is key.

2) A simple, robust algorithm, Authorizing GRound shaking for Earthquake Early 
warning Systems, (AGREEs) may reduce falsely issued alarms

3) This is a network-threshold-based algorithm, which di�ers from existing ap-
proaches based on apparent velocity of P- and S-waves.  AGREEs is designed to func-
tion as an external module to support existing earthquake early warning systems 
(EEWS) and �lters out the false events by evaluating actual shaking near the epicen-
ter.

1) AGREEs requires the earthquake location as input which we assume that this is correctly 
provided by the existing EEW platform, through the �rst P-wave arrival times 
2) Once the earthquake location is released, AGREEs measures the instantaneous peak ac-
celeration value of ground motion and calculates the associated intensity at stations around 
the epicenter, according to the conversion table of Wald et al., 1999. T
3) The acceleration is computed along the ground motion vector and is updated every 
second, so that continuously re�ned intensity estimates are delivered. 
4) AGREEs then averages the intensities at the closest three, �ve, and seven stations and cre-
ates three concentric circles whose radii correspond to distance of the third, �fth and sev-
enth closest station, respectively. 
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Figure 1. Flow chart of AGREEs 
that can be cooperated with exis-
ting EEWS. AGREEs requires the 
earthquake source parameters and 
station waveforms as input. 
AGREEs calculates the associated 
intensity at stations around the 
epicenter and averages the intensi-
ties. The average value of inten-
sity is compared with existing 
EEWS in order to check whether 
the forecasted peak ground motion 
through the magnitude and locati-
on of the earthquake is appropriate 
or not. Based on the deviation 
between the expected and the ob-
served peak ground acceleration, 
this information is fed back to the 
decision module of EEWS in 
order to confirm or cancel the 
warning. 

adopted from Kuyuk et al. (2015)

The Idea behind AGREEs
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AGREEs uses the available strong shaking obser-
ved within the blind zone (dark gray region) to 
confirm alerts before they are issued. 

Figure 1. Time-distance plot illustrating the relative timing of seis-
mic arrivals and warnings. The P-wave and S-wave arrival times 
are plotted as a function of epicentral distance for an earthquake 
with a hypocenter at 10km depth. The light gray shaded region 
shows the interval of strong shaking based on observations from 
crustal earthquakes with depths of 21 km or less. The time of peak 
ground shaking is calculated for all available stations in nine M > 
6 earthquakes from Japan and California. The blue horizontal line 
at 7.6 s is the warning of regional EEWS (after the origin time). It 
assumes that P-wave front reaches 32 km (at 5.6 s) and that 2s of 
P-wave is required to estimate magnitude. This means that the 
blind zone (an area where S-wave and/or strong shaking has alre-
ady reached) is ~23 km from the epicenter at this time. (Figure 
modified from Allen, 2011.) adopted from Kuyuk et al. (2015)
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Left figure shows the waveforms of the seven clo-
sest stations for the two test events and results from 
AGREEs at the time of the first alert from P-wave 
based PRESTo.   
(a-b) Mw=6.3, L’Aquila, 2009 and 
(c-d) Mw=5.9, Emilia, 2012 earthquakes. 
On the waveform plots, the gray region shows the 
data collected before the PRESTo alert was issued. 
AGREEs calculates intensities using observed peak 
accelerations within this shaded region. The wave-
forms are normalized according to their PGA’s and 
ordered according to their epicenteral distances. The 
maps show AGREEs intensity estimations at the 
time of the first alarm. Intensities from both algorith-
ms at the epicenter match exactly for both earthqua-
kes.  adopted from Kuyuk et al. (2015)

Right figure is a similar plot, but for the three false events.  
Waveform plots show data for the 7 closest stations to the esti-
mated (false) epicenter for each event and the map figures show 
the results of AGREEs at the time of first magnitude solution 
by PRESTo. 
(a-b) M=3.7, false event due to a teleseismic earthquake in 
Greece (Mw=5.8), 
(c-d) M=6.1, false event due to one broken sensor and spurious 
triggers, and 
(e-f) M=2.1 false event due to weather noise. 
On the waveform plots, the gray region shows the data collec-
ted before the PRESTo alert was issued. AGREEs calculates 
intensities using observed peak acceleration within this shaded 
region. The waveforms are normalized according to their 
PGA’s and ordered according to their epicenteral distances. 
The maps show AGREEs intensity estimations at the time of 
first alarm. Intensities from both algorithms at the epicenter 
match exactly for both earthquakes.  AGREEs’s intensity solu-
tions in each instance are zero. 
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Above �gure shows normalized wave-
forms for the closest seven stations. 
Gray shaded areas indicate the ground 
motion before the P-wave based 
ElamsS-2 alarm, which is given 5.1 sec 
after the origin time. At the time of the 
�rst alert, AGREEs creates three circles 
and calculates the intensities in each 
disk. An epicentral intensity of 7 is com-
puted by AGREEs; intensities of 6 and 5 
are determined for the outer circles.  In 
this case both ElarmS-2 and AGREEs 
produced exactly the same intensity in-
formation at the epicenter at the time of 
the alert.  Thus, AGREEs con�rmed the 
(accurate) ElarmS-2 alert.

We applied AGREEs algorithm to 2014 
south Napa earthquake. Mw 6.0 earth-
quake occurred on August 24 at 3:20 am 
local time occurred in the city of Napa, 
California. 
This was the largest earthquake since the 
1989 Loma Prieta earthquake in greater 
San Francisco Bay Area. This event was 
also one the most important evidences in 
California that EEWS operated as expect-
ed.  
The �rst ShakeAlert, the demonstration 
earthquake early warning system was 
generated by the ElarmS-2 algorithm 5.1 
sec after the origin time of the earthquake 
based on P-wave triggers from four sta-
tions.
We simulated the earthquake o�ine using 117 stations from available networks in California. This 
event had dense station coverage around the epicenter. Two stations are within 7 km from the 
epicenter and another four stations are within 18 km. The earthquake data were processed by 
simulating real-time data streaming of records through AGREEs. 

5) The user interface of AGREEs create three circles and variable num-
bers of stations act as �lters on top of the regular EEWS and work sep-
arately in case of failure of any of them. 
6) The average value of intensity is updated at each second and is fed 
back to EEWS in order to check whether the forecasted peak ground 
motion through the magnitude and location of the earthquake is ap-
propriate or not. 
7) AGREEs compares the expected and the observed peak ground ac-
celeration and feeds this information back to the EEWS in order to 
con�rm or cancel the warning.
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