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Seismic risk definition and performance-based
earthguake engineering framework
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A possible scheme of seismic risk scales
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I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.

Background and motivation

The OEF-Italy system of
INGV provides weekly rates
of events with magnitude
(M) 4+ for a 0.1° grid
including the whole country.
(Updated daily.)

The Italian Civil Protection
asked to investigate
whether it is possible (and
useful) to use the INGV
data to produce
consequence estimates.

The framework is that of
performance-based
earthquake engineering,
that IS including
probabilistic measures of
hazard, vulnerability and
exposure at a National
scale.
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1. Probabilistic seismic hazard analysis based on OEF

Site of interest (w,z)

Area of interest

Rates of events causing some seismic
intensity (MS) at a site of interest

Source cell (x,y)

Rates of events at (w,z)

with MS=ms because of o

earthquakes occurring MS prediction equation ~ Distribution of Mfor
at (x,y) OEF rates at (x.y) (attenuation law) earthquakes at (x,y)
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m
Indicating that Indicating
varies with time dependence on
(OEF updates) recorded history

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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2. Weekly rates of events causing building damage

Site of interest (w,z)

Area of interest

Rates of events causing some
damage state (DS) in a building of
certain structural typology (k) at site

of interest
Source cell (x,y)
Rates of events at (w,z) Probability of some
causing DS=ds because damage state to a Same as per the
of earthquakes occurring QOEE rates at structure of typology K previous slide
in the whole area (x,y) given ms intensity

\ \ I \
r

| Gy th‘H ”I

[ |

[
ZP[DS(k) _ ds|ms} [P[Ms=memR(x,y,w2)]- fy, (m)-dm-dy-dx

Summing up over all source
cells gives the total damage
rate at (w,z) site

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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3. Weekly rates of events causing individual loss

Site of interest (w,z)

Area of interest

Rates of events causing some
individual consequence to an
occupant of a building of a given
structural typology (k) at site of
Interest

Source cell (x,y)

Rates of events at (w,z) Summation is to account Probability of Ity i
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Same as per the previous slide
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Expected losses in the week after the OEF rates release

Expected number of buildings Buildinas
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I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Operational earthquake loss forecasting (OELF)
procedure summary

Rate of events in the
source cell of interest

Site (municipality) from OEF
of interest (w,z) \l/
Seismic swarm area Probability of any macroseismic Intensity attenuation
. . . < |
intensity level given the event aw
\/

Probability of any damage level for
any vulnerability class given the <——— Vulnerability model
event

\%
\L Probability of casualties or injuries
for any damage level in any

Source cell (x,y)

Sum-up over all source

vulnerability class given the event
cells j |
Inventory data for Expected number Expected number of fiﬁﬁgzrggnigt;
buildings at the site of > of damaged —> injures, fatalities, k—— :
interest T - the site of
buildings displaced people interest

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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__¢cass 1 .wms | ps [ pst [ ps2 | D3 | D [ DS |
5 0.3487 0.4089 0.1919 0.0450 0.0053 0.0002
5 0.5277 0.3598 0.0981 0.0134 0.0009 0.0000
5 0.6591 0.2866 0.0498 0.0043 0.0002 0.0000
5 0.8587 0.1328 0.0082 0.0003 0.0000 0.0000
6 0.2887 0.4072 0.2297 0.0648 0.0091 0.0005
6 0.4437 0.3915 0.1382 0.0244 0.0022 0.0001
6 0.5905 0.3281 0.0729 0.0081 0.0005 0.0000
6 0.7738 0.2036 0.0214 0.0011 0.0000 0.0000

Probabilities of casualty given structural damage

Structural Typolog Vulnerability Class__| _Ds0__| DS1_| DS2 | Ds3 | Ds4 | DS5 |
0

Masonry AorBorC 0 0 0 0.04 0.15
R.C. CorD* 0 0 0 0 0.08 0.3
Masonry AorBorC 0 0 0 0 0.14 0.7
R.C. CorD* 0 0 0 0 0.12 0.5

Exposure by municipality

_Code | Name | Prov. | A | B | _c | D | abA | abB | abC | abD |

1001 Aglie 001 222 163 286 186 697 535 350 990
Airasca 001 75 60 152 138 497 351 357 2350
E Ala di Stura 001 186 209 220 47 218 100 64 95
Albiano d'lvrea 001 192 147 80 84 646 419 199 432
T Alice Superiore 001 136 121 85 76 177 116 51 270
1006 Almese 001 261 318 511 792 1006 741 547 3364
1007 Alpette 001 144 125 122 42 116 51 32 101
1008 Alpignano 001 222 288 620 832 1214 1400 1573 12461
1009 Andezeno 001 153 110 83 116 512 315 164 714
1010 Andrate 001 141 131 123 44 250 104 61 62
\ A J
Y |
Buildings per vulnerability class Residents per

vulnerability class

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.




eshock management) During (Real-Time) Right after (aftershock management)

10/42
MANTIS K. The system for continous OELF in Italy*
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*lervolino |., Chioccarelli E., Giorgio M., Marzocchi M., Zuccaro G., Dolce M.,
Manfredi G. (2015) Operational (short-term) earthquake loss forecasting in
Italy. Bulletin of the Seismological Society of America 105: 2286-2298.

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Local OELF at 00:00 of November 20 2015
(around the cell with maximum OEF rate)

Area of interest

39" d \(1»

1 Expected weekly losses (Nov. 20-26)
'.f"\-\

P oS Al
{: {' SIS Total Total
J'H’\“\_JE fr°rf‘ the number of number of CoI.Iapsed Displaced Injuries Fatalities
maximum . . buildings
. buildings residents
'/_, rate

{ J < 10km 1708 2299 0.04 0.14 0.006 0.002

i < 30km 8180 12538 0.11 0.57 0.024 0.006

< 50km 20667 47986 0.22 1.36 0.053 0.014

< 70km 97417 277682 1.03 8.48 0.333 0.088

14 E 15 E 18 E

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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A critical retrospective analysis of OELF based on some
recent Italian seismic sequences*
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*Chioccarelli E., lervolino I. (2015) Operational earthquake loss forecasting:
) a retrospective analysis of some recent Italian Seismic Sequences. Bulletin
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. of Earthquake Engineering. DOI: 10.1007/s10518-015-9837-8
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A possible scheme of seismic risk scales

Long-Term Short-Term Event Short-Term Long-Term
I I I I I
! ! I I I
Mainshocks Foreshock Individual Aftershock Mainshocks
and Clusters Cluster Earthquake Cluster and Clusters
Life cycle Operational Real-Time Risk|] Near-real-time Life cycle
Analysis Forecasting Analysis Building Tagging Analysis

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Basic elements of an EEW system*

1. A seismic sensor network with real-time capabilities;

2. Anunit, local or central, to process the data of the
sensor network and to eventually issue the alarm;

3. A transmission infrastructure to issue the warning to
the structure, system, or community to alert;

4. An automated system aimed at risk reduction for
structures.

*Heaton, T. H. (1985). A model for a seismic computerized

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. alert network Science, 228(4702), 987-990.
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ISNet - Irpinia Seismic Network*

— Seismogenetic faults of 1980 Earthquake
H Current Seismic Nebtwork

0 Selmic network under construction (2006)
®  Main City

[ Urbanized area

BOO00 S20000

*Weber, E., et al. (2007) An advanced seismic network in the southern

) Apennines (ltaly) for seismicity investigations and experimentation with
. lervolino — ECGS Workshop, Luxembourg, November 20 2015. earthquake early warning, Seismol. Res. Lett., 78, 622-634.
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Structure-specific early warning via regional seismic
networks: problem statement

Structural/non-
structural Seismic
/ performance/loss network _
Epicenter

__—EDP (e.g., Maximum
Interstory Drift Ratio)

Source-to-site

&
<«

distance A \
IM (e.qg., peak ground i
%/'acceleration or PGA) % i

AN

Ground hansss

motion at Signal at

the site \ the
network
stations

Alarm signal travelling at light speed

<€
Lead Time = Seismic waves travel time after alarm issuance

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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This problem required a strong interdisciplinary
approach of:

1) Seismologists for the real-time estimation of source
features (Real-Time Seismology);

2) ICT specialists to enable real-time computation and
transmission;

3) Earthquake engineers for the alarming decision and
design of risk mitigation actions (Performance-Based
Earthquake Early Warning,* or PBEEW).

) *lervolino |. (2011) Performance-Based Earthquake Early Warning,
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. Soil Dynamics and Earthquake Engineering, 31, 209-222.




During (Real-Time)

18/42

Making use of real-time information to quantify uncertainty
on earthquake magnitude: Bayesian updating
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I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Real-time seismology: earthquake location (1)

X(Km)

H{km)
Voronoi cells approach provides the earthquake location given
that the first P-wave arrival is recorded at the closest station.*

-
I

) *Satriano, C., A. Lomax, and A. Zollo (2008), Real-time evolutionary earthquake
. lervolino — ECGS Workshop, Luxembourg, November 20 2015. location for seismic early warning, Bull. Seismol. Soc. Am., 98, 1482-1494.
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Real-time seismology: earthquake location (2)
depth=12__tnow=0.80__sigma=0.50
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Real-time seismology: earthquake magnitude
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. *Allen, R. M. and Kanamori, H. (2003) The potential for earthquake ,
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. early warning in Southern California, Science, 300, 786-789. {
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Making use of real-time information to quantify uncertainty
on earthquake magnitude: Bayesian updating* (2)

‘\

Real-Time measurements Gutenberg-Richter (historical
recurrence of earthquakes)
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*lervolino, I., Giorgio, M., Manfredi, G. (2007). Expected loss-based
alarm threshold set for earthquake early warning systems,
Earthquake Engineering and Structural Dynamics, 36, 1151-1168.

. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Real-Time Probabilistic Seismic Hazard Analysis
Real-Time (RT-PSHA)**

probabilistic
seismic hazard
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*lervolino, I., Convertito, V., Giorgio, M., Manfredi, G., Zollo, A. (2006). Real-time risk analysis
for hybrid earthquake early warning systems. Journal of earthquake Engineering, 10, 867—885.

) **Convertito V., lervolino I., Manfredi G., Zollo A. (2008) Prediction of response spectra via real-
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. time earthquake measurements. Soil Dynamics and Earthquake Engineering, 28, 492-505.
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When to activate security measures?
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P[PGA>PGACc]

0,3 04
PGA [m/s%]

Critical PGA for

the Structure*
*lervolino, ., Convertito, V., Giorgio, M., Manfredi, G., Zollo, A.
(2006). Real-time risk analysis for hybrid earthquake early warning

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. systems. Journal of earthquake Engineering, 10, 867—885.
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How missed and false alarms may be defined
according to this approach?*

T

0.8 J]Lﬁ!.'.s'&f Alegm {HU Alegme PG, , =1 ﬁdc} /\ Missed Alarm Probability

1F alse Alarm :{ dlarm PGy, < PG| ~}- False Alarm Probability

0.6 -

0.5 =

Probability

04} -
03 i

02t + =

04 F =

u I L i i
Time from the first trigger [s]

*lervolino, 1., Convertito, V., Giorgio, M., Manfredi, G., Zollo, A.

. (2006). Real-time risk analysis for hybrid earthquake early warning
I. |erV0|In0 - ECGS Workshop, LuXembOurg, November 20 2015 Systemsl Journal of eanhquake Engineering’ 10, 867-885.
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I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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. lervolino I. (2011) Performance-Based Earthquake Early Warning, Soil ) :H"ql:“ E '??;xl =5 "~
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. Dynamics and Earthquake Engineering. 31(2): 209-222. "-:-_f.;_:if_-i- w:%.;é.;,:_};
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A classroom equipped with an EEW terminal

What causes loss? (assumptions)
a) Structural collapse (DS);

b) No structural damage, yet collapse of lighting (NDS);
c) No structural damage, no lighting damage, yet warning (loss due to false alarm);

d) No structural damage, no lighting damage, no warning, yet shaking felt (loss due _
to panic). ok fi

. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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How the expected loss specializes for EEWS? *

Expect%df\ll\cl);sniirr:;he case EW I: L ‘f:l:E I:L "[:| EDNS,DS |: L ‘T:l EDNS DS |: L ‘T:I

Loss in the case of no damage (cost of

I ind d fth ! false alarm in the case of warning or cost
collapse (independent of the elements (reduced in the case of of panic in the case of non-warning if
alarming decision) warning and security action initiated)

) \ \ ground motion is felt)
Expected loss in the case W 2 | —
e BV | LT [RESs| LIT [+Epeps| LIT [*Ene DS[L\r]

Loss due to structural Loss due to collapse of non structural

1400 T T
No alarm
200 |- Does nol nesd feal-tirme
L camputations, everything
omn bocomputed uﬂh_nn an
o functionof T
1000 .

Alerm

Expected Loss [C]

16 18 2

*|lervolino I., Giorgio M., Manfredi G. (2007). Expectad loss-hased .
alarm threshold set for earthquake early warning systams. Optimal Alarm threshold
Earthquake Engineering and Structural Dynamics, 36, 1151—-1168.

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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ISLAR (Industrial Seismic Loss Assessment and
GF — Reduction) project.
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. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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The Magneti Marelli (FCA Group) facility in Crevalcore
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A possible scheme of seismic risk scales

Long-Term Short-Term Event Short-Term Long-Term
| | I | I
I I I I I
Mainshocks Foreshock Individual Aftershock Mainshocks
and Clusters Cluster Earthquake Cluster and Clusters
Life cycle Operational Real-Time Risk | Near-real-time Life cycle
Analysis Forecasting Analysis Building Tagging| Analysis

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Background and motivation

 Major earthquakes (i.e.,
mainshocks) typically O 4
trigger a sequence of .
lower magnitude events
clustered both in time
and space (aftershocks).

* Seismic hazard results
(conditionally) increased
for some weeks (or
months).

0.2

 The structural systems
of interest might have
suffered some damage in
the mainshock and, as a O

ftershock rate

consequence, O

vulnerability may be
increased.

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Short-term vulnerability* (1)

As-new capacity
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*lervalino I., Giorgio M., Chioccarelli E. (2014) Closed-form aftershock
reliability of damage-cumulating elastic-perfectly-plastic

. lervolino — ECGS Workshop, Luxembourg, November 20 2015. systems. Earthquake Engineering and Structural Dynamics, 43:613—-625.
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Short-term vulnerability* (2)

Elastic demand: Available energy

no damage dissipation Worn capacity: No capacity
supply damage left: collapse
DISp V /
Disp
to 1st Shock 2nd Shock n-th Shock time

Because the structure has an available
capacity, just like a battery. The mainshock
and the aftershocks drain some of this
capacity ‘until it is out of power’.

*lervolino I., Giorgio M., Chioccarelli E. (2014) Closed-form aftershock reliability
) of damage-cumulating elastic-perfectly-plastic systems. Earthquake Engineering
I. lervolino — ECGS Workshop, Luxembourg, November 20 2015. and Structural Dynamics, 43:613-625.
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Modeling collapse risk during afterhock
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Unit-time transition
matrix given by:

1. Aftershock
occurrence rate
(Omori);

2. Distribution of

Modeling collapse risk during afterhock
seguences* (2)
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generic aftershock
(from APSHA);

3. State-dependent
fragility curves.

P; j = P[j—th state |i—th state n IM = z|:f3y5(2)-dz

m

*lervolino |., Giorgio M., Chioccarelli E. (2015) Markovian modeling of seismic
Earthquake

damage accumulation.
Dynamics. DOI:10.1002/eqe.2668

Engineering and Structural
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Distribution of ground motion intensity (spectral
acceleration) of a generic aftershock of aM 6.3
mainshock in a generic location
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I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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Summary

1. We have discussed reconcilable performance-based earthquake engineering
models at three time-scales (shortly before, during, and shortly-after);

2. Operational earthquake loss forecasting is feasible in Italy based on large-
scale vulnerability and exposure data, and using as an input seismicity rates
from OEF;

3. Earthquake early warning is a feasible and economically viable solution to
reduce in real time the seismic risk reducing the exposure of the system of
interest;

4. Aftershock risk management of damage cumulating structures is gaining
attention because its potential of reducing the business interruption in those
system (factories) where indirect earthquake loss are more important than
direct structural damage costs;

5. All the discussed models are part of current European attempt to improve
competencies to deal with seismic risk in a long-term effort to improve
resilience of European communities to earthquakes.

I. lervolino — ECGS Workshop, Luxembourg, November 20 2015.
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