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Abstract

Rapidly expanding urban areas in Central Asia are increasingly vulnerable to seismic risk, but at
present no Earthquake Early Warning (EEW) systems exist in the region despite their successful
implementation in other earthquake prone areas. Such systems aim to provide short (seconds
to tens of seconds) warnings of impending disaster, enabling the first risk mitigation and
damage control steps to be taken. This study presents the feasibility of such a system for
Almaty, Kazakhstan. Genetic algorithms are used to design efficient EEW networks, computing
optimal station locations and trigger thresholds in recorded ground acceleration. Factors like
the possibility of station failure, elevation and access difficulty to a potential site, and the
potential usefulness of existing stations in the region are considered. We present a large set of
possible efficient networks, to which further selection criteria can be applied by both the

installation teams and the end user, such as authorities in Almaty.
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1. Introduction

Central Asia faces a significant earthquake hazard and risk. In particular, rapid urbanization of
the major cities in the region, such as Bishkek and Almaty, makes society increasingly
vulnerable to natural disasters (e.g., Abdrakhmatov et al., 2003; Torizin et al., 2009; Bindi et al.,
2011). Almaty in particular has repeatedly been severely damaged by earthquakes of
magnitude 7 and higher (e.g., Delvaux et al., 2001), and continues to face high earthquake risk.
This risk was one of the reasons for moving the capital of Kazakhstan to Astana in 1998. Some
fault systems in the region are expected to generate a magnitude 7.5 earthquake (Erdik et al.,
2005), with a risk scenario study of Bishkek showing that such an event could lead to 90,000
people requiring hospitalization (Bindi et al., 2011).

Worldwide, the proximity of many large cities (e.g. Tokyo, Mexico City, Istanbul) to seismically
active regions and the associated earthquake risk led to the development of Earthquake
Earning Warning (EEW) systems (e.g., Doi, 2011; Espinosa-Aranda et al., 2011; Sesetyan et al.,
2011, respectively for the aforementioned). These systems operate after the earthquake has
occurred, aiming to provide short-term (order of seconds or tens of seconds) warning of the
impending disaster to the city. In this time, even in a few seconds, several steps can be taken
to reduce and mitigate damage and risk. These include orderly shut-offs of electricity and gas
supply, deceleration of rapid-transit vehicles, and controlled suspension of activity in hospitals
(e.g., Allen et al., 2009; Nakamura et al., 2011). No such systems exist in Central Asia, though
Picozzi et al. (2012) recently presented a feasibility study for designing such a system for
Bishkek.

Several EEWs have been developed, differing in the type of input they use (single station or a
seismic network) and the level of information they provide (e.g., Erdik et al., 2003; Doi, 2011).
A key issue of all the systems, however, is taking advantage of information being transmitted
electronically at much higher speeds than those of seismic waves. Thus the signals recorded at
one or multiple stations can be transmitted to a central gateway, analyzed, and a warning can
be issued while the most damaging seismic waves, the S- and surface waves, are still
progressing to the target site. This warning can be updated with time, for instance every
second, until these waves reach the target site.

The key parameter in all EEW systems is the lead time. The exact definition of this time
depends on the configuration of the EEW system used (see Satriano et al., 2011, for a review)
but it is usually defined as the time difference between the arrival of the destructive S-waves
at the city and the time the first warning is available. This corresponds to the maximum
possible warning time that can be given. Here we define this time as the difference between
the ground acceleration reaching a pre-defined threshold (most likely during the arrival of the
S-wave) at the city, and the earthquake being reliably detected by ground acceleration
thresholds being exceeded at different stations of the network. In all the calculations we also
assume the signal transmitted between individual stations and the central datacentre system
to be instantaneous. This is clearly idealized and as such represents the “optimum case”. The
networks used by the Japan Meteorological Agency require at least 2 seconds of processing
time, though some systems in Japan have reduced this to 0.1 seconds (Nakamura et al., 2011).
As a processing time in the order of seconds would significantly affect the possible warning



time in the case of Almaty, any network would need to be accompanied by a high quality and
efficient telecommunications system.

An important aspect in developing an EEW system is the geometry of the network. Evaluations
of existing networks, and suggestions for their improvement have already been performed
(e.g., Zollo et al., 2009; Oth et al., 2010). The work presented in this article builds on the
genetic algorithms developed by Oth et al. (2010) to show how an optimal network for a
trigger based warning system can be designed, addressing questions such as how many
stations are necessary and sufficient, as well as their locations. The focus of our study is the
city of Almaty in Kazakhstan, exposed to seismic risk from the Issyk-Kul and Chon-Kemin fault
systems (Fig. 1).

2. Stochastic Seismogram Database

The optimization approach used here requires a representative sample of relevant seismic
recordings. In the design of an EEW network it is critical that all potential earthquake sources
are considered. Due to the sparsity of large earthquake recordings in the region, stochastic
simulations of scenario earthquakes were performed using the finite-source ground motion
simulation code EXSIM (Boore, 2009). Overall, 100 scenario earthquakes were considered. 64
locations were randomly chosen along active segments of the Issyk-Kul and Chon-Kemin fault
systems (provided by the Kyrgyz Institute of Seismology, digitized by the Arizona State
University'), with moment magnitudes between 5.5 and 8.0. Furthermore, approximate
locations of 11 large historical earthquakes, including the 1911 Kemin and the 1885
Belovodosk earthquakes, were considered (e.g., Delvaux et al., 2001). These had moment
magnitudes between 5.1 and 8.3. Finally, 25 earthquakes randomly distributed in the study
area, with magnitudes not exceeding 5.5, were considered (Fig. 1). For all scenarios reverse
faults were assumed, with depths not exceeding 5 km.

The possible station locations were considered on a grid with 0.1° spacing, from 42.1° to 43.3°
North, and from 76.0° to 78.7° West. With some locations not included due to coinciding with
Lake Issyk-Kul, 293 possible locations were considered. For each location, stochastic
seismograms were computed for all scenario earthquakes, resulting in a database consisting of
29,300 traces representing ground acceleration. One of the possible station locations
coincided with the city of Almaty — the seismograms computed for this site are particularly
important regarding the timing and level of a warning that is to be issued, and these ground
motions can also be used to provide macroseismic intensity estimates (e.g. Sokolov and
Chernov, 1998). The velocity models and most other EXSIM parameters used were similar to
those used by Picozzi et al. (2012). Site amplification effects were estimated from the
topographic slope, which can be considered a proxy for shear wave velocity of the uppermost
30m, Vs3o (Wald and Allen, 2007). Following B&se (2006), the P- and S-wave contributions were
computed separately using appropriate velocities, source terms and attenuation parameters,
and then added with the respective time delays.

! http://activetectonics.asu.edu/N_tien_shan/N_tien_shan_data.html



3. Network Evaluation and Optimization
3.1. Determining the quality of a network

The methodology for evaluating and optimizing network performance used in this study has
mostly been developed by Oth et al. (2010) for the Istanbul EEW system, and only an overview
will be presented here. An important aspect of an EEW system’s performance is its ability to
give not only timely, but also reliable warnings with respect to the shaking that needs to be
expected at the target site. In the work of Oth et al. (2010) for the case of Istanbul, the
expected degree of shaking is expressed in terms of warning classes. Four classes of events are
thus defined with respect to the peak ground acceleration (PGA) that arises for a given event
at the target site. Class 0 means that the expected PGA at the target, in our case Almaty, will
not exceed 0.02g. Class | events are defined as those with PGA between 0.02g and 0.07g, class
Il between 0.07g and 0.12g, and for class Ill events PGA will exceed 0.12g. These are the same
values as used by Oth et al. (2010), who followed the rule of thumb that ground motions with
PGA > ~0.1g are considered as potentially seriously damaging (Anderson, 2003), and warning
classes are equally wide in terms of PGA range. While the chosen values are to some degree
arbitrary, the nonetheless give an indication of scale of the expected ground motion. We use
the parameter PGA and the ranges given above for demonstration purposes, yet depending on
the target site and application to be carried out in case of a warning, other parameters
(providing for instance a better representation of long-period ground motions) and ranges
might be more appropriate.

For each hypothetical network, as well as specifying the locations of all the stations, three
ground acceleration trigger thresholds need to be defined for event class identification — if
during a 5 second window a given trigger threshold is exceeded at any set of three stations of
the network, a warning of the class associated with this trigger threshold is declared. While
these trigger thresholds thus correspond to the warning classes, their values do not necessarily
correspond to the class boundaries defined above, with the former quantifying the ground
motion at the section of the network closest to the epicenter, and the latter providing bounds
for the expected ground motions at the target site.

Thus each network consisting of n stations is defined by n+3 degrees of freedom — the station
locations and trigger thresholds. The optimal network is the one that can give the correct level
warning (i.e., correct class of expected ground motion at the target) at a sufficiently long lead
time for the highest number of scenario earthquakes.

To quantify this network quality we use the cost function developed by Oth et al. (2010):
N
cost = 3. Wi(L(1 = K) * S(twarn) +K) (1)

where N is the number of events (100 in this case) and tyam, represents the warning (lead) time
for each event. K is 0 if the event class has been identified correctly and 1 otherwise, L is O for
class 0 events and 1 otherwise, and W is the weight associated with each event. S(tyam,) is a
continuous function with values between 0 and 1 comparing the lead time to a pre-defined
time being considered as a sufficient warning time, tssicient. This function tends to 1 for small,
insufficient lead times, and to O for large lead times. Oth et al. (2010) used a sigmoid function
centred at tyicient (Fig. 2). The exact value of the lead time considered to be sufficient depends
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on factors such as proximity to the seismogenic zone, and the measures expected to take place
once the warning has been issued. Satriano et al. (2011) used a value of 10 seconds when
illustrating the principles of early warning. While a 10 second warning time can be considered
sufficient, this is not always possible for Almaty. Fig. 3 shows the distribution of S-wave travel
times of the 100 scenario earthquakes. Two of these times are under 10 seconds, and a further
six between 10 and 15 seconds. Given the detection and location of the earthquake is not
instantaneous but will take at least a few seconds, a 10 second lead time for these events is
not possible, and any network optimization algorithm requiring a sufficient warning time of 10
seconds would ignore these events. As these include the Kemin earthquake, this would not be
an appropriate approach. We thus use an asymmetrical sigmoid as cost function (Fig. 2). With
this function lead times above 10 seconds are considered sufficient in a similar way to a
standard sigmoid, but lower lead times are treated with more leniency. This way the
optimization approach will nonetheless attempt to maximize the warning time for events
where a 10 second warning is impossible.

3.2. Minimizing the cost function

To minimize the cost function, and thus find the optimal station locations and trigger
thresholds, a microgenetic algorithm (MGA, Krishnakumar, 1989) was used. MGAs are a
specific subset of genetic algorithms (GAs), which are guided search techniques based on
evolutionary principles to find optimal models with respect to a given objective function (i.e.,
cost function). Typically, a random set of starting models, termed the population, is generated
at the start of such an algorithm. Each model, termed the chromosome, consists of parameters
termed genes. In our case the genes are the positions of the n stations within the grid, and the
3 trigger threshold values. Each chromosome, made up of n+3 genes, represents a possible
network. For each chromosome the cost function is computed, and the fittest chromosomes
(networks with the lowest cost function) are allowed to mate, and exchange genetic
information via a predefined crossover operator, and possibly random mutations. Over a large
number of iterations (termed generations) the algorithm will converge to a minimum cost
value, representing the optimal network. Given the random input to start the algorithm and
the non-uniqueness of such an optimization problem, the solution is likely to be a local, rather
than absolute, minimum. It is therefore important to perform a number of independent runs
to obtain on overview of the range of best solutions.

MGAs differ from classic GAs in using small population sizes. Each time the algorithm has
converged (which, in this study, is considered to be the case if less than 5% of the genes differ
from one chromosome to another in the population), the population is resized to random,
except for the fittest chromosome, which is kept in the population. Oth et al. (2010) found
MGAs to be appropriate for computing optimal networks for Istanbul, and we apply their
approach in our study. Population size was set at 15 for all simulations, the cross-over operator
was set at 0.95, and no mutations were used. Each algorithm was allowed to run for 5000
generations. These values were deemed appropriate following trial and error simulations with
different values for these parameters. Networks with between 5 and 12 stations were
considered. For computing the cost function both the standard sigmoid, and the asymmetrical
one (Fig. 2) were considered in independent simulations. For each number of stations —
sigmoid combinations 20 independent runs of the MGA, each using random input, were



performed. The output of each MGA run is not just the network with the lowest cost function,
but a number of networks with marginally higher cost functions.

3.3 Pre-existing stations

While no EEW systems exist in Central Asia, a number of stations are maintained by the
Kazakhstan National Data Centre (KNDC). In particular, 10 stations located between Almaty
and the seismogenic zone considered in this study could potentially aid the EEW system (Table
1). For our calculations we projected each of these stations to the nearest grid point used in
our stochastic database and MGA. Using one or more of the pre-existing stations would reduce
the costs and logistical issues during the installation and management of an EEW network.
However, we do not want to force any of these stations into a network, as their positions
might not be optimal for EEW purposes. By trial and error, we found that reducing the cost
function of a network calculated in equation 1 by 2% for each pre-existing station used
provides a balance between prioritizing pre-existing stations and finding efficient networks.

3.4. Dealing with station failures

An important, and perhaps dangerous, assumption in the approach described above is that all
stations remain operational. Failure of a strategically placed station would seriously jeopardize
the performance of the EEW system. It would therefore be advisable to design a network
whose efficiency is not dependent on a single, critical, station.

Two approaches to deal with station failures were considered here. The first is to incorporate
the possibility of such failure into the MGA. For each considered network of n stations, each
station in turn is ignored, and the cost function of the resulting n-1 station networks is
computed using equation 1. The cost function of the full network is then taken as the highest
cost of the n networks of n-1 stations (the worst case scenario). The MGA then attempts to
minimize this value.

The problem with the aforementioned approach is the significant increase of computational
time. Considering a 10-station network, incorporating the possibility of a single station failure
increases the run time of the optimization algorithm 10 times. Should the possibility of 2
stations failing be considered, the run time would increase 45 times. We thus present a second
approach, where the MGA is run as described earlier, assuming all stations being operational.
As mentioned previously, the output is a large number of possible networks. For these, or a
number of the best of these, the effect of any single station failing can be evaluated by
calculating the cost function for all n-1 station networks, and, as before, taking the worst case
scenario. Networks can then be sorted according to this worst case cost function. The result is
a network which is efficient as a whole, and remains efficient when any single station fails.
While this approach might not be as strictly mathematically correct as the first one, it has an
advantage of significantly lower computational times. Tests were performed to compare the
quality of the 2 approaches, and differences in the results were small. We therefore proceed
with the second, less computation intensive, approach.

4. Results and Discussion

An important question in designing a network is how many stations are necessary. To establish
this, we look at the lowest cost function found by 20 independent MGA runs for networks
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between 5 and 12 stations, using both sigmoid functions discussed earlier. The results are
shown in Fig. 4. It should be pointed out that while here, and throughout this study, lower
values are obtained for cost function using the asymmetric sigmoid, this does not imply the
networks computed using it are superior. This is merely the effect of lesser costs associated
with not providing a 10 second warning. Fig. 4 shows that with few (5 or 6) stations, adding
one station can make a significant improvement to the cost function. While the cost function
always decreases with an increasing number of stations, this decrease becomes gradual once
more than 7 stations exist in a network. Given the risk of station failure is being considered, we
thus propose that 10 stations are necessary for an efficient network.

Using the MGA described above, we obtained tens of thousands network layouts. As these are
impossible to present in their entirety, we attempt to identify patterns in the best stations. For
this, for each of 2 different sigmoid functions defining the cost, the 1000 networks with lowest
cost function values were considered. Fig. 5 shows the locations of the stations appearing in at
least 10% of the 1000 solutions. The stations are colour coded according to how frequently
they are selected. Pre-existing stations are labeled with their codes from Table 1. In Fig. 5a the
standard sigmoid centred at a lead time of 10 seconds was used. The cost values of the best
1000 networks vary between 0.210 and 0.232. As expected, no new stations are present in
proximity of the scenarios less than 50 km from Almaty (including the Kemin event) — only the
pre-existing TNS station is used by more than 10% of the solutions. As no network is capable of
giving a 10 second warning for these near events, the MGA effectively ignored them. Fig. 5b
shows the most common stations in the solutions obtained using the asymmetric sigmoid
more tolerant of lower warning times. Here the cost values of the fittest 1000 stations vary
between 0.196 and 0.216. Several of the stations are the same as in Fig. 5a, but a crucial
difference is that stations closer to the epicenters of the events close to the city appear more
frequently. Station TNS, for example, which from a visual inspection is strategically well placed
between the Kemin epicenter and Almaty, is used by more than 30% of the solutions.

TNS is not the only pre-existing station to appear in the solutions, and it is interesting to note
that stations far from Almaty are frequently used. Station SAT in the east appears prominently
for both sigmoids, as does station KST in the west. Stations closer to Almaty are not as
frequently selected as might have been expected. Station ANO appears in 6% and 17% of the
standard and asymmetric sigmoid solutions, respectively. However, both sets of solutions
place strong emphasis (68% and 62%) on a new station just 0.2° west of ANO. We thus
postulate that while pre-existing stations can aid the network, there exist critical locations
where new stations would need to be deployed, even if a station already exists nearby.

In the results presented so far, fully functional networks were assumed. We now consider the
possibility of station failure. Only the networks computed using the asymmetric sigmoid will be
used to present results of this. For the 1000 networks with the lowest cost value, we consider
the possibility of a single station failing. Thus for each network we compute the cost of ten 9-
station networks effectively left after any single of the 10 stations ceases to be operational. Fig
6 presents a network not overly dependent on any single station. The top panel shows the
location of the stations over a topographic map of the region, with pre-existing stations
marked in yellow, and station that would need to be deployed new in white. The middle left
panel shows how many of the events in each class have been classified correctly, or
misclassified by 1 or 2 warning class levels (assuming full functionality of the network). An
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obvious weakness of this network would be the high number of incorrect warnings for class Il
events, though at least warnings would be issued for them. The middle right panel shows the
histogram of lead times that could be provided for the scenario events. The bottom panels
show the warning time that could be issued as a function of event magnitude and epicentral
distance. The cost value of this network is 0.215, making it only 809" in the list of computed
networks. However, with a single station failing, the cost value would go up to between 0.224
and 0.248 (depending on which station fails). By comparison, a single station failure of the
most efficient network could make the cost value rise from 0.196 to 0.266.

A possible problem associated with the deployment and maintenance with networks
considered so far is the high altitude of some proposed station locations. In the network
shown in Fig. 6 six stations are at elevation higher than 3000 metres above sea level, two of
them being above 4000. To deal with this issue, a penalty function can be introduced to the
cost value. For each station located above 3000 metres above sea level the cost function is
increased by 3% of its value, and by 10% if the altitude is greater than 4000 metres. These
values were chosen to provide a compromise between discouraging stations at altitude, but
not excluding them if the location is indeed strategically beneficial. The MGA was run a further
20 times with this penalty function, using 10 stations and the asymmetric sigmoid.

The optimal network with this additional penalty incorporated into the cost value is shown in
Fig. 7. Only one of the stations is above 3000 metres altitude. The cost value of this network is
0.207, which includes the 3% penalty — without it the cost value would be 0.201. This network
would only function efficiently if all stations remain operational. A single station failure could
make the cost value rise to 0.273 (not including the 3% penalty). To find a network which is
least dependent on any single station we use the same technique as previously, evaluating
effective 9 station networks following any station failure among the 1000 most efficient
networks. The result is presented in Fig. 8. Two of the stations are above 3000 metres, and the
cost value of the network is 0.227 (real cost 0.215 and a 6% elevation penalty). The worst case
station failure scenario would raise the cost value to 0.265 (real cost 0.250 and a 6% penalty).
These values are almost the same as those for the network shown in Fig. 6 (where station
elevation was not considered). However, important differences in network performances can
be seen when studying the lower panels of Figures 6 and 8. The network in Fig. 8 misclassifies
more events than the one in Fig. 6, one class lll event is even completely missed. It does, on
the other hand, give more lead times over 10 seconds. This illustrates the difficulty associated
with finding the balance between warnings being timely and accurate. While the quality of a
network can be mathematically expressed with a single cost value, it is important to carefully
analyze the network performance, as important information can potentially be lost in the
averaging process defined in equation (1).

The results presented here are still open to input from the end users, i.e. the authorities in
Almaty, who need to decide what is to be done once a warning has been issued. Should they
consider a warning time of less than 10 seconds insufficient for any practical purposes, the
results obtained using the standard sigmoid in the cost function (e.g., Fig. 5a) can be used. In
this is the case, it is possible that no warning at all will be given for an event close to the city,
and more reliable and timely warnings will be possible for earthquakes farther away.



5. Conclusions

In this manuscript we present a tool for designing an optimal EEW network, using the city of
Almaty as a case study. By simulating the ground acceleration resulting from 100 scenario
earthquakes at 293 prospective sites, as well as Almaty, we use genetic algorithms to identify
station locations and acceleration trigger thresholds that would make up a network capable of
giving timely and reliable warnings. We estimate that 10 stations is an appropriate number for
an efficient network. The networks are only considered to be acceptable if they remain
efficient after any single station fails. We also demonstrate that while some stations already
existing in the region can be used to aid the network, there nonetheless exist critical locations
where further stations are necessary.

While we have presented examples of highly efficient networks, we stress that these are not
the only solutions we have computed. With thousands of networks of similar quality available,
it is possible to introduce further constraints on the optimal network. This can be done by
excluding networks not meeting new criteria from the list of solutions, or introducing a penalty
into the cost function and rerunning the MGA. For example, if prior to the installation a certain
area becomes politically unstable, networks containing stations there can be removed from
the list of solutions, and the network with the lowest cost among those remaining can be
installed. Similarly, it might be considered impractical to install, or maintain, stations above a
certain altitude, or more than a specified distance from a road or settlement. The presented
feasibility study remains open to input from the end users, i.e. the authorities in Almaty.

The EEW systems presented here are aimed at regional earthquakes. For an earthquake close
to the city it is not possible to give a timely warning. It is thus recommended that a regional
EEW system is complemented by a single station on-site system (Satriano et al., 2011). Lastly,
we note that the balance between networks being fast and reliable is very delicate, and the
performance of any prospective network should not simply be assigned a single value, but be
carefully evaluated.
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Fig. 1. Topographic map of the study area. Elevation given in metres. Almaty marked with the
black square. International borders represented with the dashed line. 100 scenario epicenters
considered in the study are marked with circles of size corresponding to the magnitude.
Epicentre of the 1911 Kemin earthquake (M=8.2) indicated.

Cost value

Warning time

Fig. 2. Two possibilities for function S in eq. (1) used in the study. The standard sigmoid centred
at 10 seconds marked as a thick grey line, the asymmetric function more tolerant of lower lead
times as a thin black line.
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Fig. 3. Histogram of S-wave travel times from the 100 epicenters to Almaty.
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Fig. 4. Lowest cost values obtained for different numbers of stations used. Two curves
correspond to the sigmoids in Fig. 2.
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1000 best solutions for standard sigmoid: Common Stations
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Fig. 5. Stations appearing most frequently in the 1000 10-station networks with the lowest cost
values. Stations are colour coded according to how frequently they appear in the best
solutions. Pre-existing stations from KNDS networks are marked in labeled. A) standard
sigmoid; B) asymmetric sigmoid. Elevation scale as in Fig. 1.
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Proposed Station Locations

76 76.5 77 775 78 78.5 79

Errors in warning class given

-correct
1 crass |
2 classes

~n
o

—_
a

MNumber of Events
~n
o
o

MNumber of ¥Warning
=

0 1 2 3 0 10 20 30 40 50
Event class Lead Time given
50 50
40 * 40 *
@, * * o, *
© 3p * @ 30 #*
£ L £ :
T 20 * * g " . T 20 oo+ ¥ .
*&%é& #*
= *13! %% o] =g wx M S RN
F* % * # 4 W *
a * ¥ N ¥ * ¥ 0 " *il(-£ " * N N
4 5 6 7 8 9 0 50 100 150 200
hagnitude Epicentral distance

Fig. 6. A 10-station network which would be most efficient despite any single station failing.
Top panel: station distribution, with pre-existing stations that would be part of the network in
yellow, and new stations in white. Middle left panel: Number of correctly classified and
misclassified events for each event class. Middle right right panel: Histogram of warning times.
Bottom panels: Lead time available for the considered scenarios as a function of magnitude
and epicentral distance. The trigger thresholds for the three warning classes are 0.03g, 0.15g
and 0.24g.
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Fig. 7. The most efficient network when a penalty is imposed for stations above 3000 metre

altitude. Panels as in Fig. 6. The trigger thresholds for the three warning classes are 0.02g,

0.16g and 0.30g.
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Fig. 8. Network which would be most efficient following any single station failure, with a
penalty imposed of stations above 3000 metre altitude. Panels as in Fig. 6. The trigger
thresholds for the three warning classes are 0.03g, 0.23g and 0.28g.
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